장음표시 사용
211쪽
genitam illi ipsi integrali exaete iturum sit aequale Deinde quaeratur quantitas motus quae naui, si libera esset, ab ictu penduli imprimeretur, haecque cum illa comparetur, Ut pateat trum altera sit maior, an traque aequalis Hocque modo tutissime concludere poterimus, utrum nauis ab his Viribus vllum consecutura sit motum, nec ne
g. a. Cum igitur in hac inuestigatione multum
intersit, utrum pendulum sit simplex an compositum, ponamus primo pendulum esse simplex , ita V tota eius
massa in ipsius centro grauitatis mcollecta concipi queat. Describat itaque hoc pendulum in quolibet ascensu et descensu integrum quadrantem 'C. Sit longitudo v penduli AM AC a, eius pondus m atque descendendo ex Bilapso tempore t iam peruenerit in situm AM , in quo a recta verticali AC etiamnum distet angulo An erit celeritas eius iam debita altitudini LM acos O hincque ipsi celeritas Vacos O, qua cum tempuSculo di absoluat arculum - adcl erit di ' Pἱ H G. Hanc enim legem constanter obseruabo,
Ut celeritate per radice quadratas ex altitudinibus ipsis debitis, et temporis elementa per spatiola interea percursa ad celeritates applicata CXprimam. f. I Inuenta altitudine celeritati penduli in Mdebit a cos erit vis centrisuga cos. p, qua filum A tendetur. Deinde cum pendulum a grauitate vi deorsum urgeatur secundum directionem
verticalem κ' haec vis secundum directiones V ad n normalem, et M resoluta dabit pro directione Μ Vim rasin. O , et pro directione xvi Misos
212쪽
clx quarum illa ita tota ad penduli motum accelerandum impenditur , ut filum M prorsu non tendat. Contra Vero altera vis K M cos. O tota in filo A te dendo insumetur. Hinc ergo et a Vi centrifuga coniunetim filum vi tendetur vii in coi cm, a qua punctum suspensionis A in directione A in bilicitabitur
Qitare ex huius resolutione nascetit xi nauem retro gen III 3M cos. psim. p.
g. Is Multiplicetur ergo haec vis aΜcof psin qua nauis puppim Versius impellitur , per elementum lcm-
momentanea IMd psim .ci vacos O , cui lamentum motus geniti est aequale. hioniam ergo est dolim. d. cos O , si ponatur os o et erit bilicitatio momentanea Tta 3 M. et a cuius integrale est Man a z cos O V a cos. p. Haecque expressio praebet summam omnium sollicitationum , quibus naui retro P. getur , dum pendulum per arcum B descendit Fiat er- et prodibit summa sollicitationum momentanearum e descensu penduli integro ortarum II 2MMa, cui cum aequalis sit summa similium sollicitationum ex subsequente ascensi resultans, in qualibet penduli actione nauis retro impelletur a viribus, quarum imma est Ha ab hisque naui, si libera esset motu imprimeretur, culti quantitas sutura esset 'Ma . f. 16. tuaeramuS nunc tima quantam sim e
Fig. 3 dulum Xerat in nauem , dum in tabulatum elasticum AF impingit bi quidem tabulatum tanquam immobile spectabimus Incin rit autem in hoc tabulatum corpus. Penduli, cuius massa seu pondus est M , cum celeriatate:
213쪽
A PRINCIPIO MOTUS INTERNO PROPEL. c. et Is
tate debita altitudini a , quippe ex qua in de censiti est delapsium. Qilo autem effectum collisionis distinctius intueri tueamus , tabulato in C annexum statuamus elastrum CD , in quod corpus incurrat, cuius quidem longitudinem quantumuis exiguam concipere licet Tempore iam Tt, postquam collisionis initium in D erat secthim pertigerit corpus in M, et elastrum in statum' compresserit. Ponatur spatium M celeritas corporis iam residua debita altitudini v et vis elastri M, qua se expandere
f. 17. His positis, dum pendulum Ilterius per spatiolum dae penetrabit, erit per leges illicitationum M d C -Pdae. Sed quoniam tabulatum. AF indeque ipsa nauis in hoc statu antrorsiim jmpellitur vi Pl, alorem fΡ di, quamdiu conflictus durat . scrutari debemus. Cum autem si di superior aequatio abibit
MVO quae quantitas cum initio conflictiis evanescere debeat, erit C 2MVa ideoque spist et M a et MVO. Cum iam ambo corpora pon1ntur perfecte elastica, finito conflictu corpus habebit celeritatem aequalem illi,
qua incurrerat, et quae erat Va, sed contrarie directam fietque propterea πα-ν a. lio valore substituto prodibit summa virium momentanear im ex conflictu ortarum nauemque propellentium MVa. f. 18. Motu ergo , quem percussio penduli naui imprimere conatur proram versu praecise aequalis est illi, quem ire pendulum tendentes , quamdiu descensiis et ascensu unus absoluitur , o contrariam directionem generare Valent. Ex quo manisest est etiamsi na-
214쪽
vis ab ictu penduli propulsionem proram Versus accipiat, tamen hunc totum motum deinceps ab ascentu penduli subsequenteque descensu omnino ublataim iri, quae destructio cum post singulos ictu eueniat, nauis nullum motum progressivum consequi poterit, ut Celeb Iacobus Bernoulli est sitspicatus. tuanquam enim idem sere raciocinium, quo hic usus sim instituit, viresque nauem retrahentes sibini si modo aestimauit, tamen in determinatione vi propellentis a percussione oriundae , errorem quendam commisit, quem l . CrameruS eius Commentator probe animaduertit, neque tamen ob calculi, qui ipsi subeundus idebatur, molestiam correXit. q. 19. Neque ero haec persecta Virium propellentium et repellentium compensatio tantum locum habet, cum pendulum per integrum quadrantem mouetitu sed etiamsi minores arcus oscillando absbluat, perinde obseruabitur, id quod ostendisse operae erit pretium. Descendat ergo pendulum ante considenatum simple Amper arcum qu drante minorem H MC, sitque positis Vt ante longitudi-ΤS. . ne M a, et pondere corpori MITH , angulus HACIT : et elapso tempore mi destripserit arcum M
celeritati corporis rim debit quare eiu Vi centrifi
ga erit mariscos etp-cos e), qua filum penduli AM
215쪽
f. O. Consideretur iunc etiam Vis grauitati , qua pendulum in I secundum P deorsum Vrgetur vi TIAM; hinc per resolutionem nascetur vis pendulum tendens MK Mcos Q. Qiiamobrem filum M omnino tendetur vi sycos q)-ancos quae cum habeat directionem obliquam, pro directione origonis dabit vim Graios sin q, et M cos 4 sin o. Haec ergo per elementum temporis at multiplicetur, Ut procle-
debet, erit m , ita ut silmma omnium Virium moment:mareum descensui per arcum M respondentium sit , ancos o Vca cos o cos d).f. I. Ponattu iam cpTTO, ac pro toto penduli descensi erit linam sollicitationiim momentaneartim QMVasi cos 4 Iza MVCP seu cum C exprima celeritatem penduli in imo puncto C , ista summa aequabitin duplae quantitati motus, quem pendulum in acquirit. Cum iam ascensus similis sit descensui, summ1 virium nauem retro pellentitam, quae tam X ascensu quam descensi originem trahunt, erit IT MVCI. Ex f. II autem obtinebimus vim , quae ex ictu resultat, si loco celeritatis ibi conssideratae V a substituamus hanc, qua pendulum in tabulathim incurret, quae in VCLutto ficto reperietur quoque vis e perculsione orta I MYCI atque adeo etiam hoc casti ires in descens,
216쪽
et ascense retro pellentes simul sumtae aequales erunt 1, qua nauis ab ictu antrorsum propellitur Neque ergo hoc quoque castu ab impulsionibus penduli naui motus progressivus induci poterit. f. 22. Quae hactenus de pendulis simplicibus sunt
demonstrata, ita cum lege quadam constant sima naturae coniuncta identur, ut iam pro certo ammare pOILINUS, in pendulis quoque quibusvis compositi eandem pers clam aequalitatem inter ire propellentes ac repellenita deprehensi, iri. Quod etsi ex natura centri oscillationis ficile ost endi posset, tamen ceteris naturae legibus tam videtur consentaneum , t primi mechanicae principiis merito sit annumerandum. Qiacma modii ergo in presionibus, seu tribus mortui actioni semper aequalis et contraria reactio, ita quoque in percussionibus milis aequalita locum habet, quod eo minus est mirandi m c quaelibet perculsio ad pressione reuocn i queat. Plus itaque virium quilibet ictus praestare nequit, quam ad moti m Corporum collidentium generandum requiritur, atque hanc abi mnaues non tum hoc modo Bernoulliano propelli non pos sunt, sed quaecunque aliae machinationes, quae totae naui lintinclusae nullique principo eXterno innituntur, aeque erunt in- tiles, neque nauibuS Vllum motum imprimere valebunt.
f. a. Stabilito igitur hoc principio vicis m eiusmodi problemata restituere poterimus, quae alias solutulonge sutura essent dissicillima. Vt si penduli insuperius praeterea suerit flexile, atque non in circula sed alia
quacunque linea curua moueatur, praetereaque resistentia aliaque motu impedimenta assuerint, quae re calculum insuperabilem redderenta vel si alia quaecunque machina in naui
217쪽
constituatur, ita partim pressioniblis partim percussion bus in natum agat nillilomin is certissune anirmare poterimUS, perfecturi continuo existere aequalitatem inter tires naucm propellentes et eas. quae in regionem oppositam essectum exerant Ac si vires quidem in Omne preme te seu mortuae, istud aequilibrium quolibet instanti ex Uit, sin autem macthina insuper percussione complectatur , tum quidem non quovis momento aequilibrium cernetur , sed fieri potest ut nauis per aliquod temporis interuallum a Viribus prementibus propellatur qui autem effcctus deinceps subito ab insequente percusaone penitus destruatur Quamdiu scilicet ipsa machina in motu er- satur, et extra aequilibri statum est posita, naui motus imprimetur , quam primum autem machina in pristinum statum restituitur, simul naui in trini primum redigetur 6. Ratio autem clauius principii mi illo clarius perspicietur, si primum aquam omni resistentia carentem assumamuS. ita nauis perpetuo motum impresstim
sine ullo impedimento prosequi possit. In hac hypo thesi, si stuper naui huiusmodi pendulum aliaue quaecunque
machina agitetur, quae ni illum recipiat motus principium eXternum, ex legibus motus manifestum est commune grauitati centrum ipsius nauis ac machinae quiestere debere . nisi quatenus verticaliter vel ascendiive descendit. Haec enim lex nota solum obseruatur. cum machina per pressiones in nauem agit, quo casu tam in nauem quam in machinam aequales vires exeruntur: sed etiam si ictus seu percussiones peragunthir, centri grauitatis latus non secus perturbabitur tomodocianque: ergo machina inti a na. existens uerit comparata, eiusque actio inam ex
218쪽
pressioniblis quam percussionibu composita , centrum commune nulitatis secundum horiZontem nullum morum consequi poterit, neque idcirco ulla uitismodi machina apta erit ad nauem promouendam. f. et s. hiodsi vero resistentia aquae simul consideretur, tum lecante memorata de centro grauitati aliquantum infringitur , dum nauis a machina Milicitata tantum non cedit, quantum per illam legem cedere deberet, similique modo in collisionibus ob resistentiam aquae commune centrum grauitatis non persecte quiescet. Diffcillimo etiam calculo opus esset, si quis singulo hos effectu secundum praecepta mechanica euoluere vellet. Cum autem totus resistentiae effectu in motu minuendo consumatur, neque ab ea Issu motus produci possit :ressistentia aquae certe in causa esse non poterit, Vt navi motu imprimatur, cum eadem naui resistentia sublata quiescere deberet. Vnde summo iure concludimus quemadmodum naui remota aquae resistentia a viribus interni nullum motum progressivum adipisci potest, ei multo minus, si resistentia aquae accedat, ab huiusmodi viribus vllum motum imprimi posse. vi g. i. g. 26. Quamquam hoc ratiocinium omni exceptione maius Videtur , tamen dantur casius, quibus Ob ips:im resistentiam motu producitur, cum nultu ea remota
oriretur. Si enim nauis DEFG basi sua EF in plano aspero incumberet, super quo sine sensibili frictione promoueri nequeat, perspicuum es frictionem tantam esse posse, Vt a viribus pendulum tendentibus superari nequeat, sicque ab iis naui nussu motu retrorsum imprimatur Nihilo tamen minus ab ictu penduli contra tabel-
219쪽
Ap IN IPIO MOTI INTERNO PROPEL. e.
bellatum A frictio vinci poterit, quo fiet ut naui a
singulis percultionibus penduli aliquantum prorsum protrudatur, quae promoti cum a Viribus contrarii non destruatur, naui Vtique promouebitur, qui effectu nillio modo obtineretur, si nulla Dictio adesset. In quo memorabile paradoxon mechanicum continetur, quod ipsas ictio motus cuiuspiam causa esse queat, ita uti ictione sublata nullus plane motu sequeretur. f. a. . Eo maior igitur tinc causa dubitandi suboritur, utrum ob aquae resistentiam naui ab huiusmodi penduli ictibus nullus motus induci queat, etiamsi certum sit, si resistentia abesset, ipsi hoc modo nullum motum imprimi posse. tuo dubium ut tollamus, consideremuS nauem alternatim a duabus Viribds p eo sollicitari, aquarum altera poempore proram Versius , ab altera autem P tempore puppi in Versit Vrgeatur, hae autem Vires ratione temporum t et cita sint comparatae , Ut sit pi ΡT , quam aequalitatem determinatio Virium tam propellentium quam repellentium ante instituta iis peditavit. Quamui autem neque Vi neque ,
quamdiu traque agit, inuenta sit constans, tamen commoditatis calculi gratia tramque constantem sine errore assiimere poterimus , cum leui inaequalita nullius motus causa esse queat , qui ex aequalitate non aeque sequere.
f. 28. Ponamu igitur vim p priu agere , qua a Tg. s. Vi propellatur, atque initio nauem suisse in A , ubi celeritat in habuerit prorum versus iamque conse-cisse patium ΛΡ a atque in P celeritatem habere de-
220쪽
Ex his ergo oritur celeritas nauis quaesita finito tempore t . ,--n app- -- )-- etc. g. 29. Simili modo si finito hoc tempore t celaritas nauis antrorsum ponatur si tumque vis nauem retrahat tempore si lapis hoc tempore T celeritas nauis residua ponatur i, rePerietur