장음표시 사용
581쪽
tempus, in sensu explicato. Ad probationem qin e trarium dic posse creari aliquid ante
omitem diem di ante omnes annos , di ante Quamlibet aliam mensuram extrinseca maioris vel minoris, prioris vel posterioris dii-
rationis : non tamen ante omne tempus in-
fiftfocum ut patet ex dictis ς ita ut veru sit rargumentum quod supra atrii limus paucis variatis sic proponi posset ad probationem nostrae sententiae . Omnis creatura
existens co existit aeternitati diuinae: igitur vel eo existit adaequato & toxaliter , vel inadaequat e dc partialiter. Si adaequare & totaliter, eo i pio semper est : si inadaequale solum & partialiter eo ipso aliquando est. Si
primum: toti aeternitati aequatur: si secundum . correspondet alicui dumtaxat parti virtuali eiusdem aeternitatis. Rursus Deus potest intra eandem suam aeternitate aliquid ante, & aliquid post praedictam creaturam creare- ergo idem quod prius. Ex hoe eodem diseuthi vides quod creatura correspondens adaequale toti aeternitati diuinae, eo ipso semper esset; adeoque falsificaret propositionem dicentem et numquam est , sicut Deus pcr suam sempiternitatem illam eandem sal sificat. His postis respondendum est ad argumenta initio huius articuli proposita.
Ad primum concusa maiori nega minore. δd probationem concusso ant. nega conseq. Ad prob. conseq. nega ant.. Cuius falsitas
palet ex dictis. Hoc dictum qui dat esse darconsequentia ad esse ita intel ligenduin eli ut ea quae naturalitur italum consequutur,iaatu Iali
582쪽
De nunq.σnu'. creat. exi'. s s rrali necessitate etiam dentur . Quae autem metaphysice & in dispensabiliter consequun-tiit nequeunt ullo modo denegari. Ita inuenies in tractatu de relatione apud eos qui illam constituunt in modo superaddito : non posse per vitam potentiam poni album A EValbum B quin eo ipso consequatur modus relationis inter utrumque. Item qui subsistentiam ponunt in modo superaddito naturae singulari completae, dicunt impossibile esse a natura singulari completa diuisa ab omni alio non pullulare modum illum . Et sic de alijs. Ad confirmationem patet ex dioiis: non quaecunque consequutur ad meumesie, eadem necessitate consequuntur . Ad secundum disting. ant. cste &, dcc. non est est e& non esse, formaliter : conc. antecis non est esse & uon esse, consequenter: negaant. & conseq. Ad probationum antee. dili iterum : non esie cum aliquo addito necesa rio necessitate metaphysica consequente ade te, non opponitur contradictorie esse finis pliciter, oppositione de formali: cone. oppositione de consequenti: nega. Non esse autem cum aliquo addito uullo modo contia
dictorie opponitur si illud additum non sit
aliquid omnimoda necessitate consequens ad esse. Propterea esse & non esse album,esie& non esse hic, nullo modo opponuntur. Ad ultimum concede totum praeter vitimani minorem subsumptam. Tuum esse est non solum praecisum , sed realissime distinctum ab omni tempore, adeoque dari tuum esse non est formaliter dari ullum tempus neque determinate neque in determinate: est
tamen quod in ali reo tempore iis conseque-
583쪽
ter propter metaphysicam necessitatem superius dictam . Esse igitur tuum quamuis distinctum realiter a quolibet & omni te--.pore, eo ipso tamen quod delucidatur in aliquo tepore,adeoq; implicat dari te vel quidlibet aliud huiusmodi, quin eo ipso praeter te, aut quidlibet aliud huiusmodi, aliud detur. Sermo autem est hic de iis quae durant itaui non sint sibi sua duratio .
ARgumenta priori articulo proposita in
fauorem mina quietasetium eodem ro bore pugnant pro nusqui tantibus. An eadem etiam facilitate soluantur, patebit ex dicendis. Interim . Die endum est: implicat te esse & nunguam esse. Haec conclusio nequit eodo argumcto pro-hari, quo piobata est antecedes na propositio de secundo adiaecnte non cons gnificat loca, sicut consigni fleat tempus . Hoc tamen dax conclusioni praesenti conclusio antecedensa quod ostenderit non esse de ratione antecedentis posse per diuinam omnipotentiam carere omni consequenti: & consequenter tollit abAduersarijs hoc antecedens: omne gustae
antecedit potes carere θαρ ibet quod se
Probatur ulterius Concluso ab innata persuasione cuilibet intellectui quod eo is soquc d res sit, alicubi sit. Et hoc est argum cntum Philosophi q. Physic. ic X tu a. Xbisclitabet:
584쪽
De uunq.σ nu .ereat. exi . ssi habet : quae sunt: omnes exi'mani alicubi esse : quod vero non est nusquam esse : tibi eclim es Hircoceruus aut sphinx ς in quo vides haee duo apud Philosophum haberi
pro aequaliter certis ac manifestis: quod non
est nullibi est: & : quod est, alicubi est. Et si
cut absurdus esset qui diceret alicudi esse, id quod non est ; ita etiam ridiculus erit qui
dieet nullibi esse id quod est.
Praeterea probatur eadem Conclusio argumento sit ili illi quod factuin est eontra numquietantes. Quidquid est, ita est ut sit intra diuinam immensitatem: vel potius ut aliqualiter eorrespotadeat diuinae iminens, tali: vel igitur eorrespondet immensitati totaliter, vel partialiter sol uni: hoc est secundum aliquam partem virtua leni eiusdem immensitatis : si primum : est ubique , si secundum: csi alicubi, ergo vel est ubique vela sicubi r neutro autem ex istis modis est nul
libi, ergo nihil est quod sit nulli bi. Insuper:
implicat ita poni in natura aliquam creaturam ut non possit poni alia & alia creatura et rursus: implicat creaturam praedictam cum alijs ereaturis non habere vIIam proportionc propinquitatis & distantiat; ergo eo ipso quod ponitur illa creatura, est capax propiu-quitatis re distantiae eum a I ijs creaturis. Hoc autem inuolii it locum In tali ereatura , seu potius ponit talem creaturam in loco , ergo implicat esse ereaturam & non esse in loco. Explicatur hoc idem. Finge creari a Deo romtllam quam Aduersarius dieit nullibi poni. Hoc posito proba esse alicubi . Possibile est
creari a Deo aliam & aliam creaturam: creet igitur. Creatura prius posita habet aliquam a a propor
585쪽
proportionem vel proximitatis vel distantiae: aliana proportionem cum vna , aliam cum altera: per aliam sui partem unam propius, alteram minus prope respicit. Hoc autem est esse in loco: ergo ereatura illa est in Ioeo. Quis autem dixerit quod creata illare, de qua disputatur, non possit Deus alia creare diuersinio de se habentia ad illa ui rem, ita ut aliud sit infra, aliud supra , aliud adhoe, aliud ad illud aliud latus. Esse autem huiusmodi est sor malissime esse in Ioeo . Ad ea quae opponi possent S solent te Dpousum est supra. Obisai tur tamen insuper. Ipse mundus &est, & nulli bi est,ergo non repugnat aliquid esse & nulli bi esse. Antec. prob. quia locus
est superficies eorporis continentis; sed nulla superficies ullius eorporis conrmet munis dum ς ergo milia diis non est in ullo loco. Res p. neg. ant. Ad prob. die nos non agere hic virum possit aliquid esse, & non esse in ullo loco physeo & materiali. Hoc enim est omnino possibile : sed quaerimus utrum aliquid possit esse non esse in ullo loco formali dc metaphysico. Hie mundas non est in ullo loco materiali physico,&c. cst tamen in aliquo loeo sermali & nietaphyseo: habet enim relationem, aut habere potest, propinquitatis & distantiae eum illis punctis, quae imaginatis immobiliter fixa intra spatia imaginaria, diffusa in infitiatuin vitis
Dicas: res illa quam Aduersarius ponit
nulli bi non haberet relationem neque pro pinquitatis neque distantiae cum ulla alia creat Mac ergo non ellet in loe o . Probatur conscin
586쪽
consequentia:quia esse in toto est habere habitudines huiusmodi: et o non habere, est non esse in loco. Probatur iam anteeedens rilla eteatura posset ita esse , ut nulla alia creatura esset: in tali hypothesi non haberet relationem neque propinquitati , n oue dissentire: ergo ita esset ut &e. Maior est euidens : quis eni in neget posse aliquam creaturam esse unicam. Minor probatur ex dictis
in Logica , quia relatio habetur format iter per hoc & illud: & consequenter relatio propinquitatis & ditantiae huius ad hoc, pervbieationeiri huius & huius. Quae autem non sunt, uultibi sunt, di consequenter non sa-ciunt relationem praedictam. Hoc argumentum si quid probat, probat mundum noueste in loco .
Res p. disting. ant. non haberet relationemptaedictam realiter, & physice: concedo, non haberςt tot m liter & imaginarie : nego. Ad probationem dic relationem praedictant ut sit secundum se totam petere illas alias ubicationes, ex qt 'bus constat: nihil autu aliud petere in re illa qua ' est. Adeoque u s argu menti consistit in hoc quod res illa absque, ulla sui mutationς intrinseca, sed ad puram positionem aliarum retum haberet relatione
eraedictam et sed praedicta relatio babetur pecloca intrinseca eorum quae sic referuntur; et go iam in illa te supponitur Ioςus intritas. Cus. Advorte autem nos relationem huiusmodi in casu posito appellasse imaginariam: non quod locus illius rei sit aliquid pure imaginarium, nisi sorte intelligas de loco ex transcco : sed quia alia requisita .ad relationem huiusnac di , cum realiter non sint
587쪽
os Disput. 7. .surit s. 'solium imagi uarie sunt, & consequenter tota relatio non est rea uter, & physice, quamuis formaliter & denominative . Coneluditur igitur hare demonstratio sie. Res illa quae est & quam Aduersari ux diei tesse nullibi, sine ulla sui mutatione potest esse in loco, ergo illa res de facto est in loeo. Probatur antecedenset quia posita illa re non repugnat circa illam rem creati alias res, cuquibus se habeat in ratione distantis vel pro . pinquae sine ulla sui mutatione;ergo illa res quae dicitur nullibi esse , potest sine ulla sui mutatione esse in loco. Q ria relationes hii iusmodi secundum locum sunt. Probatur iam eonsequentia: quia relationes huiusmodi babentur per ubicationes eorum quae hoc modo se habent: ergo in illa re lain ponitur ubie alio aliter non ita s. haberet ad alia, sine ulla sui mutatione intrm seca. Hoc ars mentum quicuque bene meditabitur inueniet esse conuincens. Verum quidem est Adue sarios magnam partem non peti hoc argumento, quia magna pars Aduersariorum nobis non contradicit, tum nihil aliud contendit, nisi rem non esse in Ioco physico extrin
seco, quod possibile esse, ultro damus.
588쪽
IMM Isi se quoidiplex infinitum,
AXIME Physiei est eonsiderares sit magnitudo sensbilis inis finita : ait Philosophus 3. Physc. tcxtu 3 q. Infinitum autem & imper ransibile pro eodem habet ibi lcm . Porro dupliciter dieitur impertransibile ' uno modo quod impossibile est transite, eo quc dnon est aptum natura transiri: siue eo quod non est aptum ut in eo motus exerceatur.hoc
modo punctum impertransibile est , dc infinitum dici potest. Caret enim omni magnitudine, di consequenter caret omni fine magnitudinis. Huiusmodi infinitum diei potest infinitum negative: quod enim magnitudinem non habet,necesse est nec ultimum magnitudinis habere . Haec omnia ex Philoso. pho, qua ait eodem modo punctum esse infinitum, sicut vox cst inuisibilis . Plio modo dieitur impertransibile , non quod careat magnitudine, adeoque ineptum' si ut i i ipso motus exerceatur; sed quod ha- a a iij beat
589쪽
beat transrum inconsummabilem. Hoe modo, si daretur spatium aliquod per palmos non tot quin plures extensiim, impossibile esset sparium huiusmodi pertransire r non quod eareret omni magnitudine, sed quod magnitudinem haberet fine carentem. Finge enim te spatium huiusmodi ingredi di pettranseundo conficere mille N postea mille,&fi vis milliones & milliones passuum:
numquam verum erit, te totum hoe spatium transeundo consummasse . His postis ponit Philosophus definitionem qua veteres finiebant infinitum.
Insinitum, alcbant illi, est id cuius nihi est extra. Definitionem hane Philosophus improbat, aitque non infinitum hae, sed totum, seu persectum describi. Torum , en mrecte dieitur a quo nulla pars abest , sine euius nihil est extra. Ita homo per se us seeundum eonsiderationem physicam , a quo nec
braebium nee auris nec oculus abest: impe
sectus suturus, si quo libet ex his ab ipse
recidas & extra ponas. Huie autem definitioni suam opponit dicendo: In itum est cuius aliquid semper
est extra. Quae definitio ut explicabitur optima apparebit. Est autem sensus ex magia,tudine infinita quantumlibet Meipiatur, aliquid semper 'Iterius aecipiendum esse. Putati sit linea infinita quantumlibet repetas acceptio m per palmos , & per quamlibet . nitam multitudinem palmorum , vltra palmos aceeptos at ij semper & alia remantntaecipiendi: iuxta illud: in lium per ablationem Inisi numsuam abrumisiar. Sciendum cIi autum duplieiter considerari
590쪽
Do infinito. ss'. posse partes in qualibet quantitare. Videlicet ita ut communicent et di ita ut non eommunieent. Communicantes dieuntur quaruvna habet aliquid de suo intra alteram. Non communieantes quarum una est adaequare extra alteram. In quantitate bipalmari palmi non eommunieantes sunt duo ; commu- micantes sunt non tot quin plures, ut patet in subiecta linea , in qua non communi nantes sunt AB & BC. Reliqui autem DE, FG&e. eum ijsdem communicant, ut patet. Rursus aliae dicuntur proportionales, aliqeerte seu determinatae magnitudinis: scu ar- quales Vm eertae. In quantitate palmari est assignabilis medietas L medietas: & in qualibet medietate alia medietas: sunt enim medietates medietatum in infinitum . Quod si in eadem qu ntitate partem aliquam determines huius vel illius determinatae magnitudinis: comparando dc inde reliquum magnitudinis cum illa, diuidendo illud in partes ipfi aequales , non abibis in infinitum. Puta si in in palmo dc signes magnatudinem digitalem, noli inuenies iii si decies aut duodecies magnitudinem huiusnodi ; adeoqueaeeipiendo duodecies magnitudineor digitalem,unam semper extra aliam di semper no- . Mam ultra acceptas, totum palmum abs Mnes.