D. Francisci Toleti, Societatis Iesv, Commentaria, vnà cum Quaestionibus, In Vniversam Aristotelis Logicam Adiecto Indice ...

발행: 1596년

분량: 539페이지

출처: archive.org

분류: 철학

391쪽

M IN CAP

Secundum Cedmetriam ver. aut ex a Grais te. Vt musica est interrogatio non Geometrica de Geometria coalteram ver coincidere existimare geometrica quodam modo et non geometrica alio modo.

Dpplex enim hae, quemadmodum' irrbtini. 'ste cum Iterum quidem nev geometricum ei Aol absq; a.dvo habet, quemadmodi in rabimicum. rh ythmo alierum vero eo qu)d male hale et ignorantia

diloima. Iraee et ereae eat ita uti principiis cou rartat. o. Ia, hematit ver non est similiter par Iogi m. quoniam inediam ess semper bived de se enim omni, 'hoc rursu de asi dii i

io. Haec autem it at si intellectisne viderentur. vide Ele In raiiovi' iuver. latet nunquid omnis cic Mchoiu c. s. figura si vero defripserit planum quid au rem carmina cuculma manifestum, quod non Antari. Nou oportet autem instam tam in ipsamferre.

Vide pro si propessio inductiva, suemadmodum enim Iioc Ariae eque propolitio est,quaxon est in plurium non et Topie enim erit in omnis mae uniser ibin ratem 1 non longe agi m. Ianum quod neque instantia eaedem a principio vim propositioncs. minstantiae quam enim fert ibi. Am Distantiam,hriferipotest propositio.aa demo tritis pro si aliua,aat dialectica.lem apro. 2. Contine ita tem quosdam non dicetistit/positioni ,icere e quod ex virisq; rexsequentia Melpisit: Iacientem quemadmodum in Ceneusfacit quia ubi in sibi ipsi in m ltiplicata proportione etenim ignia celeriter stare gignitur ut ait se, haec est proportio sic ratem non eidi cogi M. nisi ceti reunam proportio si

quatur multiplex emignem celerrima inmota proportio.

Aliquardo quidem igitur non contingiti sigi are ex acceptis nonnunquam ver contingit, sed non videtur. Si autem impossibile estei ex so verum monsteare. facile virique esse resoluere converter tu enim ex nece litate Iit enim is eur hoc a tem existente,haec it.quenoMu quid fuat ut B: ex his itaque monstra' quod illud est Cou. triuntur autem magis ea esum in Mariamari. eis, quoniam nurum accidens arripiant. sed re

hoc differavi a ijs a Si tu disputariusimo sed definitiones.

augentur aurem non per media sed eo quod actumani Vt ad I hoc autem dec raro hoc de D. Whac in infinitum .Et in I m. ut A et

d C., de Erit est remem quanim,vel et is Dum bacin quo a: Par numerm quant, in quod numeris impar, quam est igitur is de C,m est par quartus numerem, is a D par veronamem .in quo E est igitur A, de E. dia tem idem est 'terrogario scor, sica, M o Cum di conclusiones,& propositiones. in principia propria esse in Demonstrati

nequalibet, ec scientia,docuisset nunc etiam interrogationes ,ris ontionesse alia propriae sic docet. Atque in tres partes caput est diuisum: In prima n terrogationes. responsiones, disputationes propnas esse in scientiis traditur. In secunda esse etiam proprias interrogationes secundum ignorantiam In tertia vcro, defectibus in sellogismi scientiarum dili erit. Proponitigii ui hanc Conclusionem. Interros ait ne sumptopriae in scientia qualibeti a L. fert hanc probationem Piopositiones ex quibus syllogismi scientiarum riunt sunt propriae in qualibet scientia . sed in teiro. gationes s logisticae sunt propositioncs. ergo inteii atione sunt propriae in qu libet scientia minorem in principio suo

more,ponit

Circa hae dubitabis primo quomodo

hia interrogationes in scientiast inmonis stratione ponat . eum in fine capiti praecedentis hoc Dialecticae proprium esse dix tit Respondet Thom quem sequuntur Egid. d alii Philosophi. Demonstratorem Dialecticum interrogare, sed cum ma na disserentia: nam Dialecticus interrogat conclusionem .d propositioncs,ex quibus syllogietat Demonstrato vero solamim terrogat conclusionem,propositiones aecipit .cuius ratione clatis id Dial cticus enim cum lex omnibus procedat porcii non soluto conclusionem, sed et: ampi positiones negatas probarriaci cmonstrator conclutionem tui denegaram dcmon, strabit. sed non propositiones, ideo eas nointerrogat, sicut Dialccticus Est etiam altera differentia nam Dialecticus concivisionem interrogat, paratu , quamcunque contradictionis partem probate. at Dem stiator partem v am: ncccssariam pio, hac cod mul. te vi , de E, sed male. Adcoloi

Quam dis

terenter idi

392쪽

esolutio. Tetti atq;Aut horis

Solutio Demostra. torem pro

positiones suas inter regare. 2. Dubium Soluti .

Dubium solutio.. Dubium. LIB. I. hiat se ergo addubium respondent Atqui hae solutio non videtur consona A.

ristot. nam hi eloquitur de interrogatio. bus demonstrati uis quae sunt propolitio, ncs, de non de conclusionibus rit ponde.tur.etiare si interrogationes propositionu, sed demonstrabilium quae sunt conclu.siones. depostea sumuntur ad alias probandas tanquam propolitiones haec solutio non mitri placet cum absolui Arist. interrogatones vocci propositiones. Propterea dico, ctiam Demonstratotem iii terrogare propositioncs, non ut indit Terenter sumat consensum respondentis, sed ut euidentiam. e certitudinem etiam a Responden te venetur: saepe enim interrogamus etiam necessaria ut simul acquiet cete Respondente faciamus: qua via saepe ctit ut Plato. quod ut acciderit, Respondentem non coacedere licet non demonstremus eas tamen declaramus exemplo.inductione. aut

ad incommodum ducentes de his igit ut interrogationibus Demostrationis est hic scrino quae aliae sunt a Dialecticis e&lie solui tui dubium Dialecticus enim de vistraquc parte contradictionis petit, quia v-traque utitur mon Demonstrato sic facit. Dubitabis praeterea: quid per interrogationem syllogisti eam intelligatur: Dico non intelligi syllogisticam, id est, Diale.cticam,ut vult Philop. sed intelligitur ea

interrogatio, que propositionem petit, cui respondere postumus, lactici, et non esse. sunt enim multae aliae interrogationes,ur, unde venis: cui totum trahitur a Magne .

te8hae enim non sunt syllogisticae:etiam dicitur interrogat: tyllogi ilica, id est, ex quibus syllogi imus componitur,ad excludendam quaeitionem,quae est interrogario

conclusionis. Dubitatur praetcrea:quomodo interrogationes pio polit: ones dicantur non ,

nam ex eis syllogismus confici tuti Remo.det Thoaiasin Albet. tract. 3. cap. dicipi opositioncs secundum substantiam ea. dem enim est res propositio di interrogabtio. modo solo dimiunt

Tandem dubitabis:quid per propositi

nem contradictionis intelligere poticat: Dico pio politionem , quaeust una pars contradictionis,qualis ciliacmoniliativa.

Manifestum iratex quod te em.

Inseri non omnem ituerrogationem esse cometii cam , aut Medicinalem, id est. non omnis interrogationes, quae in pat licularibus scientiis sunt, sunt illarum propriae, sed hae duae sunt propriae Geomet tae: altera quae it propositionum, ex quibus conclusione, ometricae piobantur alte Nota duplita propolitionum. ex quibus in Perfricti cecini et toua conclusiones probantur. 5 uniuersali stationester duae interrogationes scientiae cuilibct scientibi familiares, eae ex quibus ipsius conclusio milias etines probatur .c cae. ex quibus, quae in sub

alterna sunt etiam probantur, nota literam taut quod ex eisdem moltratur.&c Iid, si aut cae interrogationes etiam sint geometricae.ex quibus eisdem,monstratur aliquid. vi visu bilia, id est, monstrantur quae sunt perspectium

Hae sunt verba continua praecedentibus sensus est: de his etiam, scilicet,per spe estiuis principiis leddenda chratio Gemmetrae, ac ideo talium propolitionum inisteri gationes, per qua perspectiva proba, tur iunt geometricae. Idem etiam in aliis subalternis dicendum est:at suamet principia nulla scientia probat, nec ipso tum propter quid icddit non euim Gcometra, Nulla sci. ut G ometra tua principia probat, sicut entia sua probat subal rei natae principia. Dico, ut principia G coinc tra, quias undum aliam artem dc monis accidere potest prin ipia alicuius scicutiae strat.

Probare,ut notum est. Neq; omve est vitiue unum me. . Inter ciccuudo,cum sint propriae interrogationes ii qua libit scientia non esse interroganduit quc mlibet scente quam .cunque rem non enim Geom ctiam om.

ni interrogabis, nec Arithmcticum, sed quae propria illius sunt, nec similiter quilibet artifex tenetur, nec debet cuilibet interrogationi respondere: immo in disputatione nullus aliquem artificem redarguit. mi ex principiis illius artis clirguat: qu enim Geometram de re Phyina con

393쪽

3. LN CAPUT I x.

putare, eeredarmiete, non extraneis illius ta sunt:altera est,quaest in Geometria deam opposito cius quod in geometria est ut ii Q ire ne vi Fericis,aucra iniexiogo, an parallelae concurrant chaeemetricis agromor carest interrogatio non sicut Concludit, non esse disputandum in Mor nam prior de materia extraue a G cometriade non Geometricis principiis coinciriae at:haee de eadem matella, te dvaria in di rebus Datcbit enim praue disputans, dc Dp Dii Oprincipio idem poteris cuiliterpretatio idis .in ilia arte non poterit cognosci an et i lentiae adaptare in omni enim hae quorunda praued sputet cum non ex illius princi du fiunt interrogationes a scientia alimverborum piis procedat. Vel secundum Themist in in hoc ei pondour ad primamque Responso textus. non Geometricis. id est . cum ignaris Geo stionum: untem mageometricaequanio ad prima metriae. non est geometalce disputandum ne possc bax duas iam parat, eccam quae quaestim quia non pota iit ab illis percipi quando Aoppositis est,magra ad Gcometriam ac nem. praue disputetur Vel aliter ne dis utetur cedcic diacci cum tete in materia eadem in Geometria non Geometrice quia si si sit quamuis non sit prorsus Geomeitica,

disputatur,est praua disputatio, di nona p. cum ex oppositis sit. di ex hoc soluitur se parci .cum disputatio in C cometria fiat cunda quaestio diota iteram textus sic te no a.

d. Puov amantem uni Geonumcae. e c. gendam synterrogari non geometrica secunda Haeecst secunda pals capitis in qua tres id citias ometrica est. Laut iecundum Geo Ordinatio pax Ca quaestiones proponit: prima est, xttum si metiriam ct puta, quae ex eadem materia rextu Pitii. cui sunt inscientna. puta Geometria, inter sed opposito modo,saut cx alia arisint cuci. naestio rogationis geometricae ita etiam sint a Musica est,uti diximus. a geometricae Altera quaestio est(quia ut ilicivire uem buces, vita, thmi Mn. postea dicturus est. sunt duae interrogatio Duplicitet ne ageometracae, seu a musicae ut ita di Ex vocabulo, ageometricum nempe, accipitulcam, o secundum quamlibet scientiam: v. rationem distinctionis praedictae non gemna est secundum ignorantiam negationis: nam agcometricum vno modo dicitur metricum, altera est secundum ignotantiam malae ex pute negati v quod nullo modo ad Gem prauae dispositionis dubitat secundum Vt iam pertinet.quale sunt ii laetarierio quam harum ignorantiam, interrogatio gariones aliarum scientiatum,quae in Geo. nes factae inscientia, magis vicinae sint, ct Catiunt: alicro modo priuatiue, quod

proximae illi scientiae unde se lege lite aliquo modo ad Geometriam pertinet, sed a ram Boetii ex his interrogationibus quae Oppolito modo sumptum d ponit exemia secundum ignorantiam fiunt in Geome pium arithmeticum Gin consonans ei tria,qualis est Geometri ea. secundum nim duobub his modis dici potest, sicut a unamouamq; scientiam id est, ita petii ut geometricum di quod non habet proiiussa in aliis scientiis Tertia quaestio est, cum consonantiam,quod vocat in non haben duplex sit vitium in syllogismo facto in do,' quod malam habet consonantiam, scientiis. 3 secundum formam qualis est quod vocat in praue habendo ubi nota duparalogismus, di secundum materiam, pucem ignorantiam altera est purae nega- Ignoram qualis estis,qui ex oppositis scientiae pio Donii,quae si in non habendo proisus il tiam eueeedit, uter ex his magis dicatur syllogis iam scicntiam altera est prauae dispoiati duplicem.

mus ignorantiae in illa scientia di arte:Hae ni .qu est oppositum scientiae existima i. sunt quaestiones tres xe,ili interrogationes ageometrinae, quae Sermidam Geometriam. me sunt ex aliis scientiis,diciantur secundum

Soluit duas priores quaestiones distin ignorantiam negationis: qua vero Iunt ex guendo duas ageometricas questiones,seu Dppolitis,sunt praua dii positionis, vis potius interrogationes. altera est quae fit iubamus in secunda quastione ignotan in Geometii adere musica si enim eo. tia,quc est ex talibui principiis. idcst,igo metr m interroges ea quae aliarum sunt rantia prauae dispositionis, ista est conita. serentiaium interrogationes ageometri ita strenti quiaddici soluta o tertiae soluilo.

394쪽

LIBRI PRIMI POSTERIORVM.

quistioni . magis enim ignorat scientiam, diu duplex voluisse dicere, scilicet, quod expositio

qui in materia,quam qu an forma lyllo in maiora in minori bis de omni suma Authoris. g. imis citci . tur: raro autem hoc in aequi uocatione a

Indoctrinis auem non est similis'. me cidit,in qua saepe altera praemissa particu mihi. e. Uβ capiti pax h cest. Quamuis au latis est. 'p' u Caietauus Statii velint hie tertiae quae Hae itemsam. ut est videre. - stioni responderi: melius est cum Philop. Potest dici, postquam Aristo proposuit

dicere iam responsum, V;ut diximus, hic medium dupliciter sumi de omni in D autem vult Arist. discrimen inter syllogis monstratione hic prosequi rationcm cx-mo scientiarum pietat tam Matium atria, plicando disserentiam syllogismo diale, gum.quas doctranas vocat doni et syllo clico. vi tolum sit una ratio quod mih illgismo, dialecticosa ilignare. Ae primum is placet: vel quod sit noua ratio sciliceia circa de fictus.qui in syllogismi fotana ac quae sunt inscientiis sunt pcripic a dici dant:quorum primus eoium, qui in di praesentia intellectui, sicut quae videnturactione sunt, et aequi uocatio, hanc in i cic at Dialectica . cum orationes . Ac sermon tiarum rationibus non euenire ostendit; consid. rei no ita perspicuas res habcr.Ob

quia medium, inquit, est duplex, dicit ut e id magis in ea fit aequi uocativinam aequi 'nim de omni in minora ae de Iplo omni uocmio magis ad nomen fit.quam ad rem in maiori aliud dicitur ut autem explica de intellectum. v. g si circulus describete ret. quod uniuersalitas non est praedicato, ut,elatum est, quod non esset aequivoca Aequiuo sed subiecto addenda; non enim homo est tio. nullus enim carmen circulum alcm callo mam omne animal propterea adiunxit, quod concederet, sic Mathematicus res velut de iis ad n praedicatur, non dicitur omne, quod idc scripta tractat, at in nomine quo Dialecti m n fit dixerat lib. de interpretatione. cus utitur,aequi uocatio est:ob id igitur mi, quam ad

Dubium Dices quod vocat medium duplex A. nus in seientii fit aequivocatio. Vide de rei R. expositio taetroes respondet. t medium duplex. in . hoe eodem ipsum Aristis Elenchreaps v Averrois uestigi, quod medium sit unum, revoce di bi id ipsum latius docet xeodem exem're significata. in atqui uocatione enim me pio usus est. dium simplicitet est unum, nempe voce Aon oportet autem instantiam. sola. Ii uiri locum adeo ditiicilem existim Quanta MExpositio T. Sed melius Philo per medium duplex uit Philo ut alios interpretes expectaret iii ioci x Philop. intelligit. quod idem medium bis sumatur adducit tamen quandam expolitionen, Picxit. id in maiori, cum minora, de omni,quod quae illi non placet, illam tamen recisiis. in aequiuo cono est; cum pro uno in malo Thod alii. v velit Arist. docere modum. D. pio altero in minora. sumatur hoc aut quo in Demostrationibus instamu .diueri es frequentius accidit in dialecticis;quam in sum ab eo,quo in dialecticis instamus in- demonstrati uis: cuius rationem assignat stantia enim debet in scient ijs esse uniuet mPhilo nam quaelibet scientia determina salis.vi sitit ille paralogismus:omnis ci lasses contanct dc determinata vocabula cuius est figura,carmcnest circulus. ergo ad illastes deo animus scientis minus est carmen est figulari si volumus instare iis

vagus in rerum appraehensione,quam dia noti, per uniuei salem, instari ia fiet. probalecticus, qui circa Omnia vagatur: propte do. nullum carmen esse cita taliam, non petrea eis qui uocationes accidunt,cum plura singularia. sic omnis cuculus est figura. sub uno vocabulo coniugi V. g. Geome nullum carmen est figura. ergo nullum tra per circulum quandam figuram conci . armen est circulus quod auri ni instantia pit,quia eam considcrat. Poeta vero quod. d. at et Te uniuersalis probat Arist. quiadam carminis genus quia id tractat pro instantia fit propositio post ea siue diale-pterea nistri accidit aequi uocatio Dialidi clica, siue demonstrativa ad faciendum clicus vero.qui circa vi tuaque dri putat, v sylia ismum sed si instantia esi et ex sin trunque appraehendit, exponitur errori gularibu . non esset in pluribus nec uniuet

395쪽

IN CAPUT X.

Nora di ita stoe est.quot Philopono displicet. nam

antia in stati semper est conclusio illata contra Respondentis dicta, non ergo est propositio ad hoc tamen videtur tacite respond'. re S Thom quoi licet instantia si ptimo conclusio tamen sumtur postea tanquaptopositio ad inferendum aliud oppoli. tum Respondenti. dcho eidem dicebant illi.quos citat Philop. desponit eorum exem tum V, sumatur ilia instantia praece-ens: nullum earmen est circulus quae erat concluso; Sc sic dicatur nullum carmeest circulu; circulus est figura, ergo nullum carmen est figura ecce enim intuli oppositum conclusionis prioris parat gismi Sed profecto hoc exemplum est te. prelu ridendum, de miror cui Philo dissimul.iuerat est etiam in prima figura ex minori negatiua Postini quidcm alia exempla poni.

Dubium ed dubium est. nam e cinstantias pat-

ticulate contra proposita ones de omnil olirit, unde videt tit polle instari particu.atitat in scienti istob id dico.saluo melim cibi ei te biiudicio, dupliciter nos in stati in scien- tiis aut ad dratuendum tantum falsam

struendum , sed etiam ad consti uendam oppositam Demonstrationem in tunc instantias uniuersalis ponimus, quippe cum ex eis futura sit Demonstratio, quod non opus est etiam in dialecticis constructionibus oppositorum, ex hoc est, quod hie docet. aliter instantia tales esse in scientiis. alite in dialecticis V . dicat quis nulla viri' est qualitas omnis iustitia est virtus:

eigo nulla iustitia est qualitas; si e insto maiori omnis habitus est qualitas,omnis virtus est habitus.ergo omnis virius est qualitas. Iterum per hanc demonstro opposta eum alterius conclusionis silc omnis vir-tias est qualitas omnis iustitia est virtus. ergo omnis iustitia est qualitas hoe autem saepe accidit.

Defectum tradit, qui aliquando aceidit

m scientiis, nempe sumere medium consequens,d superius utrassi extremitate uincentis est vitium in secunda figura ex ut is afri imatiuis quomodo argumenta satur Caeneus Philosophu .volcns demonstrare

ignem in multiplicata analogia ficii rei scietijs.sumebat pro medio.quid superius, nempe celeriter generari id diccbat,quod in multiplicata analogia lit, celei iter generatur. ignis celeratc generatur ergo ignis in multiplicata proportione fit aduerte circa Quid sit Phanc rationem, ignem in multiplicata anare et in mul-logia ficii. csse quod semper maloifici tiplicata nis.qilam crat materia, ex qua factus erit nalogia nev cxperientia monstrat ex parua enim stuppa fit magna flamma quod velo celeriter generetur . est quod paruo tempore eiu productio fiat,ut notum est. Sed quid per multiplicatam analogiam Quid muli intelligat.exponit Philoponus cum Pio diplicata a. clo, intelligi proportionem multiplicem, nalogiae in quo reprehendit Alexandium, qui Q, perparticularem intelligcbat Dice'.quare multiplex proportio cito generatur, te spidet Philop. quia statim per numeri duplationem sit,ut pater,i. 2. s. iori r quilibet enim numerus ex his est duplus suo dimidio. multiplex ad priores. Sed pace Philo citi iis fit multiplex quam sic non tum enim per duplationem, sed per gen

rationam cuium numeri .sunt enim muluplices ad unitatem, ut patet, i. r. 3. s. c. Caeneus igitur medium commune sumebat oportebat enim conuersa maiori dic retquod ccleriter generatur,in multiplicata pios ortione fit ignis celeriter gener tur ergo cui Sed tunc maior esset falsa. nam aliqua, cleriter generantur,&non in Quia ex deo multiplicata analogia, victimae cito si cem pugil. aqua.quia erat alias maxime dispositus. dclis aetas vix tam e aqua in minota proportione fit, via undis nasest densio aere: non igitur bene demon, citur aqua

strauit Caeneus.

Allevando quidem igitur non contivgin me. 13. Docet aliquando ex acceptis putarii Ermativis. in secunda figura licere argumen Quandotati :intellige cum sint termini conuerti ceat arguis biles aliquando non licere, cum non sum mentari ex conuertibiles quamvis talis syllogismus duabus aLin conuertibilibus non videatur id est, sit imatiuis imperfectus quousque per conuersionem in secunda in primam figulam restituatur: ut omne figura. risibile; stanimal rationale, omnis homo est animal rationale.ergo omnis homo risibilis conuersa uniuersalit et maiori fit prima figura in hoc vult ostendet Arist.vt D. Thom dc alii dicunt, hunc defectum rato commmi in Demonstrationibus pre-

396쪽

Quid res lutior

Discrimen inter conmelusionem

Topica:

Demostra.

Difficilis

resoluti

in syllogis

modias

ctico et Eadem his cilior in

Demostr tione.

In Math maticis Re

LI BRUN. Oscipuis,in quibus semper fere termini sunt

conuertibiles non enim syllogismus,qui expuris asstrinatiuis in secunda figura fit, vitiosus est,cum termini couuenibit su

muntur.

Si autem esse impossibile.

Aliam differentiam,vt omnes fatentur, Aristoti ai lignat ante Demonstrationem disyllogismum di. lecticum nempe facili orem eli rei olutionem in Demo: isti titio-nriquam in syllogismo dialectico Eliau. tem rcsolutio, ut notatilis mist. c. p et . N Philop.vera conclusione proposita, di positionum ex quibus conscelave collia ta est. exquisitio dc inuentio Est autem discrime inter conclusionem vcram di exsticam de dentonstrativam,quod dialectica cum exprobabilibus sit syllogi nata probabilia autem lint multa,& vera,&falso,talis concluso ex multis,tum veris, tum fallis.syllogietati potesta ob id non habet determinata principia,ex quibus syllogi actur propter ea est diti icilis resolutio. At conclusiod monstrativa ex veris tantiim, non, tilbusce unq,sed necessariis colligitur,haec autem dc terminata sunt, propicta est acutatio

solutio in Demonstrationc

Hoc igitur,.quod dicit Aristotis v rum non posset ex falso colligi, sed semper

ex vero, cile esct resoluere nam tunc conuerterentur conclusio in proposition intellige, quoad critatem, ita si propositiones vermetiam conclusio vera,ec si con-Husio vera,etiam propolitiones essent ut si est, nempe conclusio, B, ncmpe praernis se,ctiam sunt, contra quod si conuertuntur,facile erit pcr conclusionem praemissas indagare inresolucre accum non ita sit,imo verum ex salso sequi possit, non erit talis conuersio, quod in dialecticis fit ideo resolutio conclusionum in propositiones veras in dissicilis. In Mathcmaticis vero Demonstrationibus cum non per accidentia fiat propositiones, sed per definitione . . ea. u. per se sunt, non est resolutio di ficilis. V. g. y homost animi potest di lectice pictari quia loquitur quia currit, quin legii, per alia multa se sic quia comclusio est vera dc ob id illae propositiones verae essent,adhuc facilius esset lesem conclusionem resolucreat potest conclusio es

se ita Ad illa unxiva in quibus sylloginari TERIORUM. et potin salsa, propterea difficile est eam in

propositiones suas probati uas,c solucre atin Demonstratione, cum ex veritate conchisionis sequatur etiam veritas propositionum,non est ea dissicultas inresoluti ne circa propolitiones, cum dctcrminatae sint di vcrma gentur autem non per media, et c. s. Coci firmati determi nationem propo stion uni ita di ectrici ex diuerso augmento Demoti lirationii. Est enim tripic aurum Triplex diumentum primum pol iumcndo, cum smcntum per conclutionem probaram, itertim alia, i di per hane aliam piobamus,& hoc augmetum tiam cst iii Dcmonstratione, ut patri in Euclide. per unam enim probatam alia demonstramus alterum auginentum est et, insumendo ad latus, inim aliquam sta 'riorem pallionem de variis interioribus per media varia demonstramus ut ensibile de homine per rationale, dc de cquo rhines ibile, plum Aristest, numerus infinitus,id est, incommuni, qui vocetur A. demonstretur de impari, id est de ternario. qui dicitur , per impar in quantii in id est, imparem in eoinmuni,qtu ita iuc -l itur: omnis imparcst numerus , icinnius in impar,rigo ternarius cst numerus iteruidem Ad nempe numerusiacmons retia de pari, iacmpe quaternario, qui sit E pcrparem quantum, id in incommuni, quisit D:dices:omnis parta numerus, quate narius est par,ergo ae numerus ex sicci iam mi nitu demonstrationes: crtiuin au mentum cst per media varia demonstrata Fdo eandem conclusonem , choc non fit in Demonstrationibus, nam unius ciscctus unum est principale medium in dialcctica id fit, ut duximus, ideo diri cilis stresolutio. Dices nonne etiam per varias causas au-giciatur Demonstrationis, cum unum mutam causis demonsuati possit imi colverum csse at in codcm rancre non multiplicantur Demonstratio ius dicunt autem Mathematicae setantiae sine per unicum genus causae dcmonstrunt, non contingit italibus Demonstrationibus mul. a biplicari nudiae Et hoc lau. tum intendit in pia

Dubium.

397쪽

3sa IN CAPDe Demonstratiortum stu)d, o Propter qui Feciebus ac disserent s. Caput . . Vo ure disit ' propter quid

i s intim quidem meadem cientia. mira hoc 'pliciter. Vno quidem modo si non te immediabies civia bilogis dimet enim accipitae prim accusa mentia ver. ipsim pro te quidsecundum primam tau sim viis aurem. Aper immediata quidem,' non preca am sed

notia eorum.qua conaretantur nihil enim prohibe eorum . qua conuersim praedica tur notius

i quando esse quod est non caasa, gare eri per hoc demonsti ia

tillant. Si in quo C planeta: in quo B, ne sciatillare, in quo A. prope e verum itaque D de dicere pIaaetae enim ransiimicani redem ADB. quod enim ne sciniicant propi est hoc Diem,receptumst per inductionem, an Fer sensum.necesse igitur a in se ipsi C quare demam stratumsuit,qu)d Faneta prope sunt. Hic igitur occisi bonumiui propter quid se ipsius

quod ,est. nenim propter an scintillare tropi Iant,fled propterea.quia propesunt, non scintil. Iant. Euenit ratem emper auerum mo strari alteram. merii ipsius propter quid demonstrasto.

ma causa.

meatam in illo a. In quibus antem meZia non cereuertante, eme natius, quo vo est causa ipsum, idem quid

menstratur nam amem prUtere id nomvre X. Amplius, a quibm mediam extra ponItar. . etenim in his ipsi i qu)d, em non ipsius propter

quid.en demonstratio, non enim dicitur cans Vt propieris id non resipira paries quoniam non animal si enim hoc nour vitandi cassa est. opertere animatust causam respirandi vis negario causa ei inius non et . firmatio cau a est ipsius esse. -madmodam si hoc, quod est incommem uralitiae eca idam seu da eis,quod est non sanam est,hoc quod est commens rubui esse/iai

quod ii saetari es e consimiliter ratem o cas mario ipsius esse, veta ivvsionen esse. In hiautem quasi Uugnata jam non con Iirgit. quod dictum est non inuri omne re irat anim Drogismus amem si talis eatissa media figaera visit Asanim I. in quo I. re rara re in Po*paries A. igitur inest omni remis enim re. uaris est notita imaatem Cisa r. quare Respc, silvandiaque respirat paries. Atalanta ratem talis reas iis quae se Deaxdum excessum dicantur hoc autem est plus dissa, dicere medium. Vt icud Avacharsidis, quod i Scholis non .sum tibi ines neque enim vis ei. Secundis quidem diiser eandem sientiam, MoeIecundam mediorumpotitionem ilia disteremtis lanceiis, qui estititui quod .ad eum qui est ipsi propter quid cogismum Alia a tem med disseri ipsum propter quia im

solo quod eo quod per aliam cientiam virumque pei latur. talia a tem sum quaerataque, se ha en in cem' sit alterum Ab altero vi eris spectinata Greudiciam,m Me.hax a tere metriam .e Harmonialia ad arithmeticam, m

parentiaia Astrologicam. Fer atitem viii N. Iuni nerva ae istarum, is scientiarum vi sti etesiare qua Mathemati .

Hic enim ipsum, idem quod se silvaram

est .ire. ipium vero piopter quid Mathematic rem hi nanque habem causarum demonstrati nes, e plerunque nonscinni ipsum qued: quemadmodum hi uniuersiae pecuiantur mattoties nonnulli angularium mssunt, quia non ad tris

398쪽

TI R.

enim desubiecto aliquogeometrica favi,si eviris de subiecto ali retio geometrii sum, sed non inquantum geometrica, de subiecto. M. Seba et autem, ad Prem Si unu irae ad Geometriam alia adhue, ut odela. I

ride Ipsum enim xad, Natara ritu scire Damvero propter quid Perspectivi, an simp icineri 'discipli. aut secutatim ' mathema. nam Multae aditem em non sub se imitem sciretia is rum ita se habent m Medicina ad Geometriam quod enim ulcera orbit Iaria tardires sanantur, Medici est scire propter EA. vero, Geometriae.

Se quia des

quia id propter quid.caput diuilia in duas partes.

Dissereria demonstrationis propter quid,ademonstratione quia.

Duplex genus Demonstrationis di

stinguit quae sunt instrumenta duarum scientiarum et altera enim Demonstratio,

Quia est, quae facit scientiam, quae dicitur quia est taltera Demonstratio propter quid. quae scientiam potissim, i facit per cau, sam. Est autem caput in duas diuisum pat-tes .in priori ostendit , quomodo hae duae Demonstrationes se habeant in eadem scientia, in posteriori, quomodo sint in diuelsis. Proponit igitur disserre scire quia, de propter quid .ac proinde ipsa Demonstrationes: scite enim propter quid. causam primam cognoscereat scire quia,dupliciter contingit:vno modo cum propter causam, sed non primam cognoscimus; altero modo cum immediatum effectum non per causam coenoscimus esieri enim potest,ut cilictus licet cum causa conuertatur sit notio nobis. retunc per illum demonstrantes facimus inmonstrationes quia,

Vt quod prope fiet planetemn

Ponitduo exempla:alterum est stellae non scintillantes sunt prope nos planetae non scintillat ergo sunt prope nos. Si e sylloreismus ab effectu procedit,quia cffectus notior est,cum sensiud inductione percipiatur;senta,quia ipsos planetas non se intillare visu dignoscimus. inductione, quia in his omnibus.puta argento.auto,plumbo,quae prope nos sunt. non scintillare coperimus. Poterit talis quia ieri propter quid . maius extremum mutando in medium .sCQuae sunt prope nos non scintil. Iant, planctae sunt prope nos,ergo plancie

non scintillant;hle est per causam Demo

ligi in praesenti loco. Mem c Laaim demonstrant. Ponit secundum exemplum quicquid

circulariter illuminatur,cst rotundum, Luna sic illuminatur ergo est rotunda: cile iam abesse estu, dc potet it eodem modo fidiri propter quid sumendo causam pro medio quod est rotundum, sic illuminatur. Luna est rotunda, ergo sic illuminatur. In quibus autem media non convertuntur,

et cet.

Docet non semper Demonstrationem quia, fieri propter quid, cum enim effectus notior est. sed cum causa non conuertitur,lii solum quia, non propter quid ut omne progressuum est animal omnis leo pro grestiuus est,ergo omnis leo animal non dices tamen omne animal progressivum est sunt enim multa animalia , quae non sunt progressiua: in his tamen est Demon

stratio quia;non propter quid. emptim in quibin medium, dic. Assigna exemplum secundi generis deis

monstrationis quia est, nempe cum sitiet causam mediatam.&dicii sin quibus ire-d:um extra ponitur per mcdium extra poni intelligit Alexander, quod fit in secunda figura, in qua medium dicitur extra poni,vt dicitur i. Priorum .cap. quia sit superius, et praedicatum de utraque extremitate quia vero hae Demonstrationes,quae fiunt per causam remotam, fiunt in secunda figura. ideo dicit Din quibus medium extra ponitur. Etiam aliter exponit, quod medium extra poni, sit causam esse rem rami distantem ab effectu, ast alia causa stante ipsam. Vtraque expositio bona est, prior paratim est Alberti .c. c.tract. 3 exemplum au tem,st hoc si quis probaret parietem non respirare quia non est animal, assignatet quidem causam, sed remotam, propria enim causa non respliandi est non habete

pulmonem, remota velo. noncise animal,

nam si non est animal .no habebit pulmone bion tamen est cauta proxima. e probat Atistot illam non esse causam proximam nam si non animal esset proxima causa non respirandi animal csset causa

I. Expositio a Exposi

Quae ausa

propria nore spirandi: Quaeric morae

399쪽

s IN CAPUT X. proxima respirandi: in proximis e nim ea spitis est animal nullus paries est animas.

sis. si affirmatio est causa assumationis. dc igo uti paries respirat per A medim negatio, est causa negationis: vi non tem telligit per B maius extremit,pe C,ni in peries qualitatum est causa proxima non

sanandi etiam temperies est eausa lanandi , ta econtra non sic autem est de animali non enim animal est causa proxima ecim mediata respirandi. cum multa sint aninialia, quae non respirent vi pisces; ob id etiam non animal non et eausa non respirandi Nota ex implum Aristotelis qui ro

Porio.

Soluti

Dubitat Philoponus an possit in secun Dubium di figata fieri demolitatio propter quid cx Philo,

Respondet cla bene. posse fieri, deponit ex Pono. emplum obscvitari larius erit si sic dicatur Soluti omne respirans habet pulmonem . paries

non habet ubi On trata ergo non rc spirat.

Di: bitat praeterea an in prima figura os Allelusint hae Demonstrationes negari uenerii bium rhi Causa pro

xima quae

nan site sumpsit contrarium, nem rema: liabeno it spondiat subtiliter quod non . quia cum lo-on maius extremum concludatur negat luce solui

minori, propter medium negativum, debertim dium negari de minori extremo.

fieret in prima figulae minor negati uas

quod non licet. No enim dices: omne pulmonem habens respirat, parac non habet pulmnncm. ergo non respuat. Dico hoc Solutio non esse dicendum: est, ii iii Ialium pos authonta surinus enim optime in prima figura De mi iliata ones sacere per causas negat mas.sumcdo pio medio totam causae negatio. neni lic nullum non habens pulmonem respirat,omm paries est non habens pulmoncm ergo nullus respirati Compisanta viuem huiusmodi me.

Philoponus d Themistius dicunt hiedi. scd non sanandi: nam in causistitiam Pioximis non valet a negatione causa ad cnectum contrarium , sed ad negat: onem

eiusdem c lis eius: no enim die es si animal ratio irale est causa ii sibiliri non animal rationale est catis adlebilis, sed non risibilis. Dubii a Philoronus: nam Aristoteles videtur procedere ab opposito antecedentisa oppositum cons quentis, quod non licet. dicit enim : si non animal est erus nore spirandi, animal est causa respuadit Respondei bie Aristotcl. non facere pio positioncs ac largumentationes sed dicere de caulic in mediatis c proximis quod si est causa proxima alicuius effectus .eius nega tio erit causa iaceationis illius ciliciushoc

contra . si negatio est causa ne pationis af Aristotelem compat archai causa rem rhil otii fit iratio etiam eiit eausa arti mationis. Di bas his. quae dicuntur secundum excessum ees: qii id est causa proxima imico illac se rex pikant autem ea dici secundum excesproximam, ex q.ia omni de sola procedit reum,que o sunt necessaria sed superflua. est cius Undii animal non est causapto Ac si dic.it istae causae remotae sunt superix ima progrestiui motus quia non omni suae, cum sine hisiacmonstrare pollimus. animali inestri nee similiter non respirare sed reuera melius exponii S. Thomas ne Expositio non est ab eo quod est non esse animal pe superiora e comuniora dici secudum, melior quia nos olito animali inc sti multa enim reveehu, di est sensus, has remotas causas Thoriae animalia nou respirant causa velo proxi dici. ut pia dicata superiora sexcediit enim ma,sola.&omnis et Tectum producit, dein superant effectus Dices: qua ratione id huiusmodi causis est vera illa propositio iocour: Dico: quia reddit rationem, qu Aristo Nec impedit quod effectus possit ire tales Dcmonstrationes quia sint in se ab alia causa pio cedere . quando haec est cunda figura nempe cum mcdi , scilicet illi ploxime subordinata unde animal ra caule remote sint superiorcsciscenibus .aexionale causi censetur non remota iis bi s desiliis praedicentur, cum auicin medium

iis, licet tisibile ab admi latiuo proueniat. superius est. secundam facit figulam. admitatiuum enim subordinatur animali di enim istud est strud achar dis dimiationali, tanquam causae principialiaque Vtitur alio exemplo eiusdem ex Ana Nisi: quae proccdunt. eharside,qui cum Scythae stet .m degeret Athenis, currentibus f minis piae vino nimio saltantibus quas vocat Aristo: IesAuleui des.suit interrogatus,an in Scythia essent umilis Respoudit uoucile vires..ha ce 2 ismus a lixi talis me fostendit, in qua figula similes sint Demonstrationes faciendae, ae in secunda docet constitui di beete, dices enim Smo rc-

400쪽

LIRRIM POSTERIORUM.

Dubium. An demos ratio uia sit divicenda de mostratio

Dubium . solutio. Laee causit tremota proxima enim erat

ebrietas ex vino est autem Demoti uia oscfacicnda: bi sunt aut et rideri sunt es, in my lil. non sunt vites. ergo in Scythia non sunt aut et rides. Demostiatio est . quia: non enim est proxima caula non esse vites,cum esse vites non sit causa, quod sint. cum etiam ubi vites non sunt, re' iuntur tales: vinum enim potest differri utitutdi. milibus literis. sicut in priori exemplo.

Concludit se dixisse de Demonstratio, ne, quia . di propter quid secundum eandem scientiam, d secundum mediorum positionem; id est quomodo dit Terant in mcdiis, di per quot media Dcmonstratio quia,procedat, quae est prior pars capitis. Dubitat ut an Demonstratio quia si dicenda Demonstratio Dico non esse potissimam Demonstrationem,qualis est definita superius . ac de qua locuti sumus hactenus; haec enim sol propter quid, insunt: est tamen quaedam Demonstratio imper. fecta, distincta specie ab ea, quae est per causam primam harum enim distinctio se .cundum media sumi debet haec aut edinferunt specie in his Demonstrationibus. Dubitatu secundo nam videtur esse aliud genu Demonstiationis, puta signo, smilite Demonstratio propter quid causae, di propter quid impliciter ut superaus diximus ex Auert pia terea est ad impcssibile Demonstratio. ut si ignis non esset a t.

tracti uu .no e sic calio ui consequens est falsum .ergo tantecc densi Dico tu De monstratione, quia non solum comprehendi Demonsitationem ab effectu sed quamcunq;.quae per causam primam non procedit. siue sica, tactu . siue a signo, si,uea causa remota siue quae fit inter super totae inferiora quid litatiue inferiora enim superiorum . dc superiora inferio

rum . sunt remota causa scum ex negatione

inferioris non sit negatio superio. is, nec ex affirmatione supelior sequatur assit matio in erioris,quae fiunt opus ad causam primam,ut diximus Dico secundo, non o. rus esse illam Demonstrationem pirater quid distinguere, quia omni, D monstratio causae ostendit causami conclusioneesie,ut late diximus superius Dico tertio,

illas Demostrationcs reduci, vel ad quia, vel ad propiet quid unde illa relucitui ad

hanc. propter quid omne calidum est athliaca tuum ignis est calidus ergo est atri

Alio ratem modo Zsser ipsum me. In secunda parte docet quia dc propter quid .dit Tetre ui diuersis scientiis. Non intelligas hie esse aliud genus Demons rario. nis,quia, sed quod ita liqua Demon iliaco potissima propter quid.cuius causa dc propositioncs sint unius scientiae conestasionis veto cognitio,quae dicitur, quia, si talterius scientiae.quod accidit in subalternatis.ut diximus late superius ponit exemplum Philop Perspectiuus enim dicit ic ad maiorem distantiam minoies appare re. quia sub minori videntur angulo, puta Arad minoiem vero distantiam maiores apparere, quia sub maiori angulo videntur,puta R. at quate angulus Bisit maior A. G cometrae est cire propter quid Perspecti-ui veloquia ponit aristo multa exempta subalternarum. Nota per Apparentiam,vivult Philopon intelligi aulicam quae sub Astrologia est.

Fer quidem um uocae sunt mmmvstae 'CPhilopon. suda hernantes: sobalterna. ras scientias vult dici se te una uocas quia vitae que sunt eiulac rationis cie quia

non absolute 5 simpliciter sed crcdide.

rim, mentem Arist.csse, quod aliquae sub . alternantes, iubalternatae idem habent commune nomen ut Musica dicitur ipsa Mathematica ut speculativa etiam Musi. ea, dici iur haec practica ei subalterna, qua vocat secundum auditum . Similiter Nautica dicitur itiologia, sin ut sua subalternan, hoe tamen non in omnibus est in . uenire Nola subalternantcs vocari Math malicas, quarum est cognoscere propter

quid . sub alternas, cio sciatibile . quippe quae magis sensui accedant, cum materiales sint, quarum est cognoscere quia, occonclusiones.

Hi enim habent demonstrationes caustrum, me Ostendit sub alternantes ipsas causas cognoscere, non tam c quia: accidit enim flemienter, quod quis icneat causam, deessetam ignoici cium causam non applicat A sonii exemplum saepe enim con

Pars CC vide de

subalter

natione

Sententia Philopon Aui horis.

illa

SEARCH

MENU NAVIGATION