Antonii Genuensis ... Elementorum artis logico criticae libri 5

발행: 1753년

분량: 560페이지

출처: archive.org

분류: 미분류

441쪽

LIB. F.

422 ART. LOGIC AEqua ratio in homine vix constat, exercitos suppono. Demonstrationum vero a polieriori Scientiae physicae, & Ethicae exempla su ministrahunt, in quibus demonstrationes a priori vix locum habere possunt. Demonstra. f. Ιχ. Iam & est demonstratio aut dir tio directR. aut indiresia. Di recta est quum ex se sitis principiis continuata atque connexa id earum terie veritatem demonstra mus , seu quum analogia constat copulando species , non excludendo . Huiusmodi eli ea , quae superius j. i 3. potita est, quodlibet eo tis es

in Datis quod es in Datio oee. Plurima exempla suppeditabit Euclides in elementis

Geometriae . Pulcherrimum est hoc , quo propositionem nonam libri secundi demon strat, nempe s resta ι inea secetur bifariamo non bifariam , quadrata partium inaequa-ι iam dupla erunt quadratorum , quae fiunt

ex dimidia, oe portione .nter utramque secti nem interjecta. Rite enim constructa figura, est quadratum AE duplum qua

E F duplum του G F, adeoque ipsius C D. Sunt autem A E, EF aequalia qua drato A F ex propositione q7.

lib. i. ergo A F duplum ipsorum A C, CD . Jam A F aequale duobus AD, D F ex eadem 47. lib. i. ); ergo AD , D Fdupla ipsorum A C. C D. Iam A D , DF aequalia Α D, D B ; ergo A D. D Bdupla quadratorum A C, C D. Q. E. D. In hac demonstratione species copulantur ,

442쪽

Dx Usu RATroclini. 423 quumque, reperiantur plene similes, omnes primae substituuntur. g. M. Demonstratio indirem fit, quum demonstramus non posse rem aliter se habere , quam eo modo , quo dicimus , quam quam id directe demonstrare nequeamus . Quod autem non potest esse nisi unum in modum , necessario in eum modum est . Itaque haec demonstratio fit exclusione specierum ceterarum primae exesusae plane similium. Sit Ar id esse nequit in nullum alium modum nisi B; necessario est in m dum B. Nisi vero demonstretur, nullo alio modo rem se habere posse , demonstratio indirecta nihil eoncludit quia non sunt exclusae omnes species, praeter illam, quam veram esse demonstrare volumu . Petamus exemplum ex prima propositione Euclidis lib. 3. Quaeritur dati circuli centrum et aio esse F . Id sie demonstro , quod nequeat esse aliud . Quodcum ue enim esse dicatur praeter F, id esse non posse ex eo demonstro, quod pars essetae. qualis toti. Dica. tur esse G , du

ctis A G , E G,

B G , aequales erunt anguli G

B. adeoque recti: est autem ex eo structione rectus quoque angulus FE B; ergo angulus G E B aequalis angulo F E B, pars toti. Idipium conficio de quocumque alio Puncto praeter F . Ex quo D d 4 col.

443쪽

LIB. v.

424 A R T. L o G r C AReolligo , nullum aliud esse polli centrum

circuli, nisi F. Patet autem ex his exemplis, solam demonstrationem directam eius esse naturae, quae mentem illuminet & doceat; quum indirecta cogat tantum , nec illuminet, aut doceat. Cur enim F si centrum non video e sed intelligo aliud ab Fesse non posse.

C A P. v.

De argumento ab Malogia. f. r. ' Nalogiam esse totius serme homi-IA. num scientiae sundamentum facile demonstrari potest . Nam tota ferme hominum seientia principiorum intelligentia, o ratior nis eonstat , quemadmodum Geometria axiomatibus, o demonstratione . Ac demonstratio quidem tota principiis nititur, ut maiorem vim habere nequeat,quam habent principia. Iam principia, totum est majus sua parte ; si ab aeqMalibus demas ae

ratia : non potes idem simul esse m non rise, quae sunt his similia, intelligentia constant .' intelligentia ex collatione idearum,ex. gr. totius & partis, quantitatum aequalium , existentiae & non existentiae, existit. Porro ea collatio & computatio non omnium singularium id earum est, sed quarumdem ; ergo ea principia non naicuntur ex computatione omnium earum rerum , ad vas reseruntur, sed partis tantum. Quaret ut ex analogia vim genericam obtineant.

Ergo quoniam iis tota ferme hominum scientia in aedificatur; tota serme hominum scientia analogia constat. f. a. Sed est ita, ut vulgo existimatur, λ

444쪽

DE Usu RATrocrin . 423 CAP. F. analogia firmum ad veritatem demonstrandam argumentum Ac quibus regulis hujusmodi argumenta adhibenda sunt Qua in quaestione sic censendum est, argumen. tum ab analogia esse firmum, si species ex qua analogia sumitur sit plene similis ei, ad quam transfertur, & s neeessario si id ruod illa est: contra si vel minimum insitiscriminis, vel non necessario sit idipsum quod speetes, inde argumentum desumitur, incertum est 6 imbecille . Ex.gr. in Trianingulo X reperio tres angulos duobus rectis aequales: idipsum de Trigono Z recte eo cludam, si ea, ex quibus illud conelusi in prima specie , plene & necessario eadem sint in secunda . Quumque snt, si Trigona snt rectilinea ; certo concludo , & omnes Trigoni Z ansulos esse duobus rectis aequales . Nam in prima, ex quibus conel f , sunt tres lineae , quae ita in se mutuo

incidunt, ut tres angulos efficiant: aequales sint eae lineae , nec me , ma res aut

minores, ita , aut alio modo in sese inclinentur , id non spectavi , quum in prima

specie conclusi: quin certus sum id adeoninelusionem nihil interesse : nam aequales nec me sint, longiores, aut breviores, hoc auti lo modo in sese inclinantes, id ipsum conficio quum ad Z refero quod de X conclusi. Quumque omnia possibilia Trigona rectilianea in iis, ex quibus id conclusi, plene &necessirio sint inter se eadem ; conficio in

omnibus Trigonis rectilineis tres angulos esse duobus rectis aequales. f. 3. In omnibus id Seientiis Geometricis ohtinet. Huiusmodi scientiae coni,nentur ideis mere abstractis, quin non abostractis modo, sed quodammodo a mente

445쪽

LIB. . 426 ART. LOGIC AEhumana creatis. Ideae lineae, superficiei, anguli, trianguli, quadrati, circuli, coni, cubi, sphaerae . parallelepidi, non modo abstractae sunt, sed a mente nostra crea tae , ut idcirco esse aliud nequeant, quam id, quod voluimus esse. Itaque adaequatae sunt, totaeque, quantae quantae sunt, Ge metrae menti praesentes. Quare fit ut ubdere possi mus , utrum species ex quibus analogia traducitur, plene & necessario ει miles sint iis, ad quas traducitur. Paral. lelogramma aut parallelepida P. Q. in eadem basi & in iisdem parallelis posita esse aequalia comperii: cetera omnia si easdem habuerint conditiones sunt ipsis P. Q. plene& necessario similia, id est habent eademea, ex quibus in priori specie eone lusirruare eidem legi subjecta sunt. Circuli aut

phaerae S. R. sunt ut quadrata diametr Tum . Dum hoc concluderem nihil assumpsi nisi simplieem naturam circuli aut sphaerae : quae quum sit eadem in omnibus pose

sibi lihus circulis aut sphaeris, id ipsum de

omnibus aliis concludo . Itaque ob pers ctam similitudinem omnium figurarum elusidem generis, quantum ad earum proprietes pertinet, omnes pro eadem haberi possunt; ut ideireo hae conclusiones , Omnia Triangula rectiIinea habeat tres angulos duobus rectis aequales: Omnia parallelogramma Dei pa rallelepida in eadem basi θ intra easdem γναμ telas posita sunt aequalia : omnes circuli aut fphaerae sunt ut quadrata diametrorum, M. pro his unis existimari debeat, Tria alix anguli omnes sunt aequales duobus rectis et Parallelogramma aut parallelepida P. Q. in eadem has , m. sunt aequalia : Greuli aut Sphaerae S. R. sum quadrata diametrorum .

446쪽

Dκ Usu RATIOCINll. 427 CAP. Ex quibus fit ut in his rebus generica an logia tam sit firma , quam illud quod in singulari specie conclusi. f. 4. Eadem ratio locum habet in axi matibus & theorematibus Metaphysicis ,

seu mere abstractis: in iis enim omnes species, quibus aptantur, sunt plene & necessario similes, ut idcirco pro una eademque haberi possint. Itaque tam sunt vera gene Tatim accepta, quam in singulari spe ete, unde primum traduci caepere. Ex. g. quum consero quinque dexterae, qua haec scribo, digitos, eum tribus eiusdem manus, nec in ea computatione quidquam aliud specto nisi numerum , conficio . 3. digitos plures esse, quam tres: aut maiores esse I. quam tres, si quantitatem quoque specto. Quum autem omnes species, in quibus aut . 3. n

merOS eum. I. gonsero, aut . s. Omnes t

tius A partes cum tribus eiusdem A sint priori illi plene smiles; omnes pro illa una haberi possunt. Fit igitur ut quod in

illa conelus, generatim ad omnes similes pertineat ; aut quod generatim de omnibus simili hus di eo tam si verum, quam quod confeci de priori illa. Ergo axiomata. 3.plares sunt quam . q. totum majus est quam sua pars, Vera sunt, ae in iis analogia fir-

minimum est argumentum. Id ipsum obse Vare possumus in ceteris axiomatibus &theorematibus mere metaphysicis. f. 3. Sed an etiam demonstrationes Geometricae, quae a priori sunt, analogia constanti Ex. gr. ex natura Trigoni conficio tres ejus angulos esse duobus rectis aequales: qua in re huius demonstrationis analogia sita est Nempe in hoe, ut hanc conmclusionem aestimem ex natura anguli recti.

447쪽

LIB. v. 428 A R T. L o o I C AERecti anguli mensura est circuli quadrans;

duorum ergo rectorum semicirculus. Hoein notis est, quia sic convenit Geometris. Itaque tota argumenti, qua ad eam pro positionem demonstrandam utor , vis in hoc esse posita debet, ut ostendam semieir. culum esse plenam mensuram trium trigo ni angulorum. Iam quum confeci, ignotum ex noto illo aestimo. Quare analogia est. Necesse non est ut per plura eam. In

omnibus Geometricis demonstrationibus hoe agitur, ut quod quero, ei, quod scio, aut aequale, aut simile esse conficiam ς quum confeci, tum demonstravi, idest tum effeci , ut ex eo, quod scio, ignotum aestimem, ut non magis de hoc quod ad notum adduxi , dubitare queam , quam de eo quod scio. f. 6. Nec vero solae demonstrationes directae analogia eonficiuntur, sed ipsae in primis indirectae , ut scilicet agnoscamus

totam humanam rationem analogia consta re. Demonstratio indirecta rem ita demum conficit , quod ea nequeat alio modo se habere, quam uno; eo ergo necessario est. Porro ut demonstretur rem nullo alio m

do se habere posse , quam uno , analogia efficit , quae omnes possibiles species in

unum conseri, ut quum hane excluserimus, caeteras excludamus. Utamur exemplo p sito in superiori cap. Iv. Centrum ei

culi ABC esse aio F . Id sic demon stro . Eius circuli centrum sit aliquod necesse est : id vero praeter F nullum esse aliud potest ; est ergo F . Ac vero quod nullum aliud esse queat sic conficio . Id

certe centrum non est G. , uti constat ex

eo , quod si si , ne id quidem verum esse

Diuit ipso by Corale

448쪽

Da Usu RATIOCINH. 429 possit, totum esse sua parte maius: sed quum cetera infinita eius circuli puncta praeter F in eadem specie comprehendantur atque

punctum G ; quia quod in specie puncti G. obtinet, id ipsum obtinet in reliquis omni-hus ; ergo quod de specie G. conclusi de

caeteris conclusum habeo . Quare ea demonstratio, uti est per se perspicuum, analogia constat . Itaque haec demonstratio tum valida est, quum caeterae omnes species ita sunt illi , quam examini subiecimus , plene similes , ut omnes pro una illa haberi possint , id quod in scientiis Gemmetricis & Arithmeticis tantum obtinere potest, quemadmodum ex iis, quae dicturi sumus, patebit. . Sed obtinet id ipsum in caeteris diseiplinis Video usurpari , nec tamen semper recte. Aisue ita plerumque aut plurimarum rerum ignorantia confirmatur, aut

opiniones plene falsae defenduntur ab iis, quorum philosophia magna ex parte pigritia est. Quare perpendamus haec paulo accuratius, sustusque diducamus: nullus enim est totius logicae locus nee magis gravis , nec extricatu dignior . Uerae analogiae regula est, ut dixi, plena & neeessaria specierum similitudo. Ubi ea deest, analogiae vis nulla est. At in plerisque eorum axiomatum , quae plerique philosophi adopta- Vere , plena & necessaria specierum similitudo saepe non cernitur : suare saepe de iis addubitandum est. In primis id contingit in rebus physicis & politicis , quarum

nunc analogias ad examen revocare est ani

mus .

f. 8. Res physicae, idest Universi, minime illae se nobis omni ex parte patela

ciunt;

449쪽

43o A T. LOGr C AEEiunt o pauca earum attributa percipiunt sensus e nec multo plura ex iis , quae in sensus incurrunt, detegit ratio. Earum igiatur ideae inadequatae sunt. Itaque non est facile , ut in Geometricis , similes earum species definire. Ex quihus fit ut argumenta analogiae fallere possint. Qua igitur vi, quod quaedam corpora sint gravia , omnia esse gravia quidam arbitrantur: alii omnia

levia , quod quaedam sint experti levia Z Corpus definiunt Physici rem extensam , antiti pam seu solidam , divisibilem . Quidam argumento analogiae dixere omnes huiusmodi res extensas, antiti pas, divisibiles, seu omnia corpora mundana, esse natura gravia e contra alii omnia suapte' natura levia arhitrantur . Gravitatem illi definiunt vim centripetam: hi levitatem vim centrifugam . Itaque illi omnia corpora centripeta esse aiunt et hi centrifuga. Est autem utraque positio salsa . In immenso enim Universo nullum esse centrum potest: nam qui dieit spatii alicuius centrum, is circumserentiam praefinit. Quum ergo nullum si in Universo centrum , corpora sua

Pte natura neque centripeta, neque centri

fuga esse possunt. Sed quoniam sunt magni3uidam in Universo enrporei globi, veluti tellae, Sol, Planetae, sunt alii qui dicunt

non omnia quidem Universi corpora esse suapte natura timcentripeta , sed singulorum globorum corpora esse suapte natura eius globi centripeta, alii suapte natura centri iuga e ut omnia corpora ad Tellurem pertinentia gravitare in centrum Telluris. alii ab eo centro conati aufugere. Item utrummque salsum . Nam quoniam non unum est

corporum totius Universi centrum, sed i finitas

450쪽

DE Usu RATIOCINit. 43 finita, ut hue alia ferantur, illve aliatessest natura eorporea non potest , si quidem est una eademque in omnibus o si una non est , analogiae argumentum nullum est . Itaque illud suapte narara in neutra positione verum est . Ergo ut si centrifuga sunt, non suapte natura sunt, sed vertigine globi e ita si centripeta non suapte natura , sed vi alterius causae, a qua propel

Iantur , aut trahantur.

f. q. Sed ne illud quidem recte ex an

logia conficietur, omnia quae Telluris adimosphaera continentur corpora esse bravia, quia plurima gravia quotidie experiamur. Nam quum constet hanc gravitatem non esse a natura corporea 3. 8. , sit vis asdita necesse est. Ergo quibus addita non analogia , sed experimentis definiendum. Itaque ubi experimenta desunt, argument ri ab analogia est divinare. Ac vero re

centissimi philosophi argumenta , quibus

Robertus Boileus gravem esse ignem conficere sibi visus erat, inania esse omnia dein monstraverunt, ignique gravitatem denegarunt. Ne tonus gravitatis Universalia Corporum terrestrium magnus & illustris Patronus non sine ratione alicubi suspieatur, esse fluida aetere & igne subtiliora,

ea que minime centripeta .ε. Io. Magnus est analogiae usus in Astronomia . Inter cetera argumenta , qui

hus recentes Astronomi motum Telluris i vexere, est argumentum Analogiae. In systemate Planetario quinque ex primariis Planetis, Mereurius, Venus, Mars, Iupiter,

Saturnus circa Solem revolvuntur, quorum

idcirco respectu Sol est Stella fixa. Cur ex regula generali eximeretur Tellus Non

SEARCH

MENU NAVIGATION