장음표시 사용
431쪽
mams deprehendatur cum curtiis obliquos examini subiecerimus, ad quos milies veli, instructae praecipue debent adaptari , cum contra in nauibus remis propellendis ad cursum obliquum omnino non opus sit respicere. Cetenim eXmodo sὶ,lutionis secile erit calculum abibluere , si praeterve: itum etiam remi Vrgeant, atque nauis coniunctim a remis ci velis propellatur. Simili modo quilibet non dissiculter calculum instititet, si motus non fiat in aqua quiescente , sed in nihilo , dummodo directiones fluuii ct motus corporis congmant atque cursiis sit directus; quam ,brem huiusmodi inuestigationibus diutius non adhaerebimus.
8op. Qiuod hic stiperficiem velorum persecte planam
positimus, id ibi utionem datam minime turbat etiamsi vela a vento in figuram concauam extendaemir: in secluenti enim libro quo volonim doctrina imprimis excutietur, demonstrabitur semper velum planum assignari posse eandem vim excipiens, ita xt quae hic de velis planis asseruntur , aeque Valeant pro velis, quemadmodum in praxi v stirpantur. Deinde etiam Elutio ab experientia in ii κdissentire videtur quod ventum maxime lucrosiim statuat eum, qui directe a puppi venit, cum tamen obleniatione constet naues felicius a xento non nimis obliquo propelli. Ratio autem huius discrepantiae sita est inconsilieta coli Katione elonim qua vela tum in puppi tum in prona tum etiam in medio nauis expandi 2lcnt: unde ficile colligitur , si cntus recta a puppi ad proram tendat, tum posteriora vela anterioribus ventum adimere, atque impedire, quo-C c c minus
432쪽
minus ventus in vela anteriora impingere queat. Curi autem hoc non eueniat, sit directio venti est obliqua, mirum noli est ventum obliquum maiorem celeritatem producere 2lere quam directum. Sed dilec tantum sunt intelligenda, si nauis pluribus malis sit instructa , hoc enim
casu tantum illud incommodum locum habet, at si unicus adsit malus, ventusque adeo libere in Omnia vela incurrere possis, tum memoratus dissensus tireorim cum praxi non obseritatur, sita potius nauis eo, celerius progredi deprehenditur , quo minus directio venti a directione cursio nauis aberrat. Eiusmodi autem dissensus apparentes saepius ocis currunt praecipue in hac doctrim de motu nauium , sed semper si omnes circumstantiae probe perpenderuur Milo diluentur.
sto. Hi igitur sere sunt casus, quibus naues citriudirect o motuque rectilineo in aqua tam quiescente quam fluente incedere possunt, ad quem cursiim requiritur, ut tum ipsius motus directio, tum media directio resistentiae tum directio vis Bllicitiantis tum etiam fliniit directio inter se congni ant; atque ita axem stu rectam a puppi ad proram duellam incistini. duarum conditionum Vnica si defecerit, vel cursius directus vel motus rectilineus turbabitur, euenie e vi via motus directio ab axe nauis seu diametro longitudinali apuppi ad proram porrecta declinet, Vel etham centrum grauittatis cogatur in linea curua incedere , quae Omnia probe inter se discornere , et quodque ex suis, causis deritiam omni attentione erit opus. Interim ex traditis satis liquet si vis siollicitans directionem habeat tali tun nauis longitudi-Diuitiam by Coos e
433쪽
tudinem , tum ctiamsi cursiis vehementer esset obliquus, tamen brutii in citrsiun directi im mutatum iri. Qiundo enim vis sbllicitiuas perpetuo in eandem plagam tendit, tum motus si quis assuerit obliquus mox tam destruetiir, ut cius directio in directionem vis sitalicitantis incidat. Atque hinc fit , ut naues quae remis propulsentur , Perpetuo siccnndiun sitim longitudinem progrediantur, cum directio vis rem anim semper ei, tundat, quamuis labinde ope gubernaculi directio cursiis immutetur. Tum enim quasi ad momentum diutum durat minus cunii lineus, statimque is directum transinutatur, cuius rei ratio potissimum in resistentia laterali est sita. quae in his nauibus vehementer est magna, motumque Obliquum statim destruit. Atquc ob hanc rationem curis directus proprius est illi nauium spcciei, quae remis propelluntur ; nam quoniam vis remorum iu qivuntiis plagam aeque merceri potest , atque minus secuudum longitudinem ob minimam restantiam est ficillimus, absurdum Bret huith modi naues admotum obliquum iusti uere. Longe aliter autem comparata est ratio nauium , quae Vento ad motum cientur, cum
directionem venti non ad arbitrium Brmare liceat, sed eo vento, quem Brtuna silmerit, ad iter institutim coufici endum uti oporteat. Quoties igittu euenit xt cursiis ivia tentus a directione venti tantopore distrepet, ut cursius directus omiano institui nequeat, turn ad cursim obliquum est confiugiendum , qui co felicius Vsiurpabitur, quo propius versus regionem unde Ventus dat nauigari poterit. In liis igitur nauibus, quae venio propelluntur, praecipue cursius obliquus attendi debet, indeque potissimum regulae pro com
434쪽
structione et velificatione nauium simi petendae. Qiamobrem istum cursiim obliquum , quo nauis non secundum longitudinem suam progreditur, imprimis in iis nauibus evamini subiiciemus, quae non remis sed sola Vento ad min
8 II. Si coi pus seu nauis AEBF in aqua quiescente acceperit citrisu obliquum secundum directionem GL data eum celeritate, determinare tam ipsam viam, quam eius centrum grauitatis G describet, quam Cbique cursita obliquitatem , seu postionem axis longitudinalis A B.
Sit AGL angulus declinationis clarsiis, quem directio motus GL cum positione axis longitudinalis BA seu spinae constituit, huiusque anguli sinus ponatur s; cosmus vero r celeritas autem corpori impressa secundum directionem GLdebita sit altitudini v. Deinde sit Rri modia directio resistentiae , quam corpus hoc motu obliquo ab aqua patietur, quae cum directione spinae seu aris nauis AB angulum M RB constituat, cuius sinus sit tr , cosinus vero ' ρ ; atque resistentia qinam nauis hac obliquitate in aqua mota patitur, tanta sit, quantam pateretur superficies plana uu eadem celeritate directe contra aquam in directione Μ R mota nde Vis resistentiae, qua co pus .undum directionem RH vrgcbitur, aequalis erit ponderi molis aqueae , cuius Volumen est 'uuυ pende bunt autem quantitates σ , e et u ab angulo Obliquitatis
435쪽
AGL eiusve sinu s atque structura totius corporis. Quare si massa seu pondus totius corporis ponatur Μ atque volumen partis aquae siubmersie 'V erit vis resistentiae in directione RH urgentis quae vis duplicem exeret essectum quorum alter consistit in motu progressi centri grauitatis G alterando, alter vero in corpore circaaXem verticalem per centrum grauitatis G duetiam convertendo. Ad priorem autem effectum inuestigandum oportet vim R Μ tanquam in ipso centro grauitatis G in directione sibi parallela GH applicii tam concipere. Anguli igitur H G Κ , quem directio resistentiae G H cum directione
motus GK conssiluit, sinus erit ra' - atque cosinus T scr-sere. Hinc vis resistentiae quae est reλlvetur in binas laterales G Κ , Κ Η, quarum alterius G Κdirectio in ipsem motus directionem G L incidit, altera
Κ H vero ad hanc erit normalis: o quibus vis tangentis alis GK erit s res re , et is normalis ΚΗ Vis igitur tangentialis retardabit corporis m nun , essicietque , ut dum corpus elementum spatii in dae percurrit, suturum sit Vis normalis autem corpus a semita rectilinea deflectet cogetque arcum circularem concauum Versis regionem H describere , cuius radius erit Qtiod denique ad alterumeflectum attinet, quo corpus a vi resistentiae conuertetita circa axem verticalem per centrum grauitatis G transeuntem ,
patet primo conuersionem fieri an regionem AF, ita ut per eam declinatio AG L magis augeatur, si quidem centrum resistentiae R intra centrum grauitatis G ct proram
436쪽
A cadat. Dicto autem intentatio G R et, fiet momen tum vis resisteiatiae ad hanc conuersipnem producendam , quod momentum diuitiam per ipsiuis corporis nitinaciatilin ineletiae ros ctu ciuidem axis verticalis per cenuiuia grauitatis G transtiliuis, dabit im gymoriam cui motus angularis momentaneus cst proportionalis. Sin autum corpus motum angaea n iam habuerit, tum ex vi gyrat tria ciuS incrementiam cognoscetiir. Q. E. I.
8 I 2. Retardatio ergo motus co erit maior, quo minor hic rit angulus HGK , hoc elt quo minor fuerit dis strentia inter angulos GRΜ ct AG L. Ex quo scquitur quo in agis angulus G R I excedat angulum A GL eo Bre
8ia Qitia porro plerumque resistentia m fit maior, ouo magis cursus abliquus a directo dissert, seu quo maior silerit angulus A GL, dummodo rectum non excedat, alor ipsuis eo maior erit, quo maior fiterit angultis A GL, inde iue eo maior motus retardatio orietur.
8I . MaXima igitur accedet moliri retardatio, si angulus A GL fiat rectus, tum enim non solum valor ipsius omnium fiet maximus, siqi iidem resillantia lat ratis multum sirperet resist tiam pmnae. Sed ctiam tum directio resistentiae R M in motus directionem incidet, quo si xt maximum valorem obtineat, fiatque m L. Coros. Disitigod by Coo li
437쪽
8as. Cum radhis cumedinis viae, in qua oeninunsanitatis G incedet, sit , corpus a directione sita impressa GL deflectet; atque dum elementum Gg pereurrit, deflactet angulo
816. Deflexio ergo a cursia rectilineo non pendet a cinritate corporis, sed talitiam a cursias obliquitate. Acursiis enim Giquitate pendet tum valor ipsius su , tum etiam rσ-Q, seu sintdi ditarentiae angulomm 'RG et
8x . Sι igitur angulus Μ RG aequalis fiat angulo AGL , tum dei hctio a cursu rectithico omni γ erit nulla , corpusque ita linea rectχ presedi perget. At si angulus M RG maior fuerit angulo AGI tum deflinet versm Α , atque iam curvilineam G dcscribet, inter GA et CL sitam. Sin autem fiterit angulus A GL maior angulo 'RG, tum in partem oppositam desse l.
813. A centriam resilientiae R incidat is ipsim grauitatis centriim G, tum Visi gynatoria evanescit, hoc igitur casu positio axis AB perpetno manebit sibi parallela. Vnde si angulus M RG seu HGB aequalis sit an gulo KGB , tum corpus iasa silum perget moueri in recta G L , sed etiam eadem cursius obliquitas con2ruabitur.
438쪽
8 I9. Incidente autem R in G, seu quod perinde est, dummodo puncta G ct R in eandem rectam xerticalem cadant, si angulus ' R G maior fuerit angulo AG L, tum cursus directio Ggi accωet ad positionem axis AB tandemque abibit motus in cursum 'directum , eousque conseruandum, quoad motus per resistentiam omnis extinguatur. Sin autem angulus ΜRG minor sit angulo ML tum cursus continuo magis deflectet a directo, ita ut tandem eius directio fiat normalis ad AB.
82o. Si autem centrum resistentiae R non in Gsed versiis proram A cadat, tum corpus inter mouendiunconuertetur circa mem Verticalem per centrum grauitatis
ductum atque axis BGA gyrabitur secundum plagam AF ; quo fiet ut obliquitas cursus seu angulus A GL perpetuo crescat.
82I. Sin autem centrum resistentiae R vltra G versus puppim B cadat, tum conuersio fiet in regionem Oppositam ; unde cursus obliquitas m tolletur, atque axis nauis A B conuertetur in ipsem motus directionem G L; quod si evenerit cursius directus conseruabitur.
8ar. Ex his etiam intelligitur, si nauis AB, quae ante cursu directo promouebatur, a vi eXterna ita conue tatur, ut eius spina AB angulum obliquum A GL clim
439쪽
anotus directione constituat, cuiusu si mutationes indetat ontume. Praecipue enim res tendum erit ad caeniatnun resistentiae R , angulo obliquitatis curias praesenti ΛGL Iespondriis: quod si visat centrum gravitatis G versi proram silerit collatatum , tum nauis sese in pristinum situm restituet, cursimque directum recuperabit. Contra vero si centrum resistentiae R verita proram catat, tum nauis non solum in cursum directum se non recipiet, sed etiam obliquitas cursus augebitur donec axis latitanalis EF in cursus directionem incidat, quod si evenerit hoc sita in directum' progredietur. Quocirca si centnam resistentiae R in puppim cadat, cursus directus siquam cenisdus est habere firmitatem, cum nauis si ex eo depellatur, eo sponte se restituat ; e contrario autem si centrum resiste tiae R versius proram cadat , tum cursus directus quasi aerit infirmus, eo quod si 'nauis quami minime de curis directo declinetur, obliquitas continuo maior euadit. Qilamobrem cursiis directus difficulter conseruabime, nisi h beat firmitatem, hoc est nisi centrum resistentiae R ve sus puppim cadat enim in iussiceret ad cursiim directhun penitus iastruemum'. laterim tamen etiamsi centrum resistentiae R in prona situm sit, tamen cita sus dii OIdii 'pς imbernμην . Bb consentari poterit ' eo maiore tutem opus erit, viis restiuitionem in cursum directum , O Projus punctum .R ad pr'ram A ceciderit, smubque quo malin an vis . GRM extiterit. Cursus autem o
liquus ab ansylo AG L in directum conseruari omnino milit nisi centrum 'esistentiae R in G cadat, atque a
440쪽
quidem ope gubemacilli motus rectilineus fissi eadem obli . quitate conscium potest: quamuis enim gubernaculum iasitum deflexum motum conuersionis nauis circa axem verticalam impedire queat, tamen per ipsem gubernaculi vim motus magis a via rectilinea GL declinabitur ; Siqndem angulus Μ RG maior Berit angula A GL, prout id quidem in nauibus accidere debet. Quando autem centrum resistentiae R in puppim cadit, tum fieri potest ut ope gubernaculi eadem obliquitas cursus, motusque I relineus conseruetur ; id quod eueniet, si vis gubernaculi non solum motum gyratorium impediat, is etiam simul im normalem detant. Ex his omnibus perspicuum est ad motum rectilineum sici directione obliqua cons andum opus esse viribus extemis insigni cautione applicandis, qua quidem de re mox videbimus. - Quo autem quovis casti aestimari liceat, quomodo Vesores o , e et u u Vna cum interuallo G R m ae a data cursis obliquitate pendeant, exempla quaedam asseramus, in quibus isti valores exhiben poterimi.
8as. Sit primo figura AEBF composita ex duobus
segmentis circularibus aequalibus ad communem chordam Λ B dispositis, seu sint nauis omnes festiones hortunatales hin figurae aequales; et ponatur radius circuli cuius arcus AER et AFB fimi portiones c; atque' cum centrum
grauitatis G in medio chordae AB erit situm , sit AG m BG a'; EG FG b, ita ut sit abe are ponatur breuitatis gratia e-δ Ex his cum propos s 3 compararis prodidit interuallum G R α κ
